UT D
UT Dallas

Software Quality and Software Testing

Part 1 — The Big Picture (How Quality
Relates to Testing)
Part 2 - Measuring Software Quality
Part 3 — Software Reliability
Part 4 - Defect Containment
Part 5 - Measuring Software Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D
UT Dallas

Software Quality and Software Testing

Part 1 — The Big Picture (How Quality
Relates to Testing)

Copyright 2020, Dennis J. Frailey Software Testing Topics

ut D Dennis J. Frailey

Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
(various titles), Raytheon Co. 1997-2010
Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017
Adjunct Professor, UT Arlington, 2014-present

Areas of specialty: software development
process, software project management,
software quality engineering, software metrics,
compiler design, operating system design, real-
time system design, computer architecture

Copyright 2020, Dennis J. Frailey Software Testing Topics

A Recommended Book on Measurement

Some of the material covered SOftwa e

Metrics

A Rigoraus and

today is taken from this book.

Although not a book on testing, Precties! Aparozch
it is a very good book on FHERD £O7T10M
measurement and addresses

several aspects of testing. i
Tar reeen

kirsei S

) (W e

Software Metrics — A Rigorous and Practical Approach
By Norman Fenton and James Bieman

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D More Recommended References

SWX - The Software Extension to the Project
Management Body of Knowledge, available from PMI
() and the IEEE Computer Society
()
— This is a general reference that may be important if you want
to apply some of today’s techniques in project management.

SWEBOK - The Guide to the Software Engineering Body

of Knowledge, available from the IEEE Computer Society
and also at

— This is another general reference that gives an overall picture

of software engineering knowledge and summarizes topics that
any software engineer should know about.

Copyright 2020, Dennis J. Frailey Software Testing Topics

http://www.pmi.com/
http://www.computer.org/
http://www.swebok.org/

UT D

Part 1

The Big Picture — How Quality
Relates to Testing and Other
Aspects of Software Engineering

Copyright 2020, Dennis J. Frailey Software Testing Topics

ut b Test and Evaluation

Evaluation: Appraising a product through one of the
following:

— Examination, analysis, demonstration
— Testing
— or other means
Testing: Exercising a system to improve confidence

that it satisfies requirements or to identify
variations between desired and actual behavior.

[“Evaluation” is the broader term. J

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D But What Are We Appraising?
What is "Desired Behavior”?

e

= Satisfies requirements

= Works correctly

= Does what I want it to do

= Does no harm

= Reliable - I can depend on it
= Easy to use

Can we test for
— these

* Portable characteristics?
= Easy to update and maintain

= Easy to test

= Runs efficiently / fast Can we
_ measure

= Consistent them?

u Ty —

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D Measurement is Often Involved in
How We Test Software

Requirement How we might Test it
= Software must handle up > Measure how many transactions
to 10 transactions per it processes per minute
minute
= Software must produce > Run the software on 1000
the correct output different test cases and count

how many produce correct output

= Software must be easy to > Have 25 people use the software
use and rate how easy it is to use

= Software must be easy to > Run standard test procedures
test and measure how long it takes

Copyright 2020, Dennis J. Frailey Software Testing Topics 9

UT D

But What Are We Testing?
What is "Desired Behavior’”?

Satisfies requirements
Works correctly

Does what I want it to do
Does no harm

Reliable - I can depend on it
Easy to use

Portable

Easy to update and maintain
Easy to test

Runs efficiently / fast
Consistent

Copyright 2020, Dennis J. Frailey

e

These are all
characteristics of
Software Quality

I.e., testing is one way to
assess software quality.

r

—

And measurementis
often part of testing.

~\

Software Testing Topics

J
10

™ SWEBOK'
V3.0

Guide to the Software
Engineering Body of Knowledge

Editors

Pierre Bourque
Richard E. (Dick) Fairley

Downloadable at: < IEEE
www_swebok_org IEEE@)computer society

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1

Ut D SWEBOK Facts

= 3 Editions have been produced since 1998
= 2 Editors: Pierre Bourque and Richard Fairley
= 8 Contributing and Co-Editors

= 15 Knowledge Areas, each with its own Editors
— Each aligned with related ISO and IEEE standards

= 9-person Change Control Board

= Over 300 reviewers (chosen due to their expertise in
various aspects of software engineering)

— Over 1500 comments received and adjudicated on various drafts (3
edition)

= 36 Items in Consolidated Reference List

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 2

UT D The 15 SWEBOK Knowledge Areas

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance

Software Configuration
Management

Software Engineering
Management

Software Engineering
Process

Copyright 2020, Dennis J. Frailey

Software Engineering Models
and Methods

Software Quality

Software Engineering
Professional Practice

Software Engineering
Economics

Computing Foundations
Mathematical Foundations
Engineering Foundations

Software Testing Topics 1 3

UT D

Software Requirements

Software
Requirements
ft A 5 ; F 2 g ftw:
8O TWALS Requirements Requirements Requirements Requirements Requirements Practical 50 HIALE
— Requirements PI- : M . z e " " Requirements
Process Elicitation Analysis Specification Validation Considerations
Fundamentals Tools
Definition of a : ; System : Iterative Nature
Requirements Requirements . Requirements of the
> Software I Process Models oy Classification = Definition Reviews i
Requirement Document Requirements
Process
" gf"d“c‘ and Ly " Elicitation Conceptual L, iystem Ly Prototypi L5, Change
rocess rocess Actors Techniques Modeling eql{lremt-ents rototyping Management
Requirements Specification
; Architectural
Functional and Software .
g i " Model Requirements
—» Nonfunctional Pr(c;c:: LD orlt IlZe51gn i t - Requirements Validation A[g;;:‘es
Requirements and Managemen equirements Specification
Allocation
Emergent Process Quality Requirements Acceptance Requirements
Properties and Improvement Negotiation Tests Tracing
Quantifiable Formal Measuring
Requirements Analysis Requirements
System
Requirements
and Software
Requirements

Copyright 2020, Dennis J. Frailey

Software Testing Topics

14

UT D

Software Design

Software Design

Software Design
Principles

Copyright 2020, Dennis J. Frailey

Distribution of
Components

Error and
Exception
Handling and
Fault Tolerance

Interaction and
Presentation

> Security

Architecture
I Design
Decisions

Families of

— Programs and
Frameworks

The Design of
> Information
Presentation

User Interface
Design Process

Localization and

Metaphors and

Conceptual Models

Internationalization

Software Testing Topics

Software Design Key Issues in Software User Interface Softvyare DESIg." Software Design Software. Design Software Design
[Fundamentals [l Software Design | [| soucture and Design Quality Analysis Notations [Strategies and Tools
e Architecture g and Evaluation Methods
: Architectural General User . Structural
General Design 1 N General
Concepts & > Concurrency > Stuctures and > Interface Design g;?i;\);tes > Descriptions Strategies
Viewpoints Principles (Static View)
lit Behavioral ; ’
Control and ; Qua Y CAAVIOna Function-Oriented
(Sjogtext o]f)) L > Handling of gtrc]hltcclural Use\" Interface £ Analys|§ and Ly Descriptions > (Structured)
oftware Design p— yles Design Issues Eva:‘uétlon (Dynamic View) Design
echniques
: The Design of . 3
Software Design gn :
P g > Data Persistence 3 Design Patterns —» User Interaction —» Measures Obj?m Oriented
o Modalities Design
o

Data Structure-
Centered Design

Component-Based
Design (CBD)

—» Other Methods

15

UT D

Copyright 2020, Dennis J. Frailey

Software Construction

Software
Construction
Softwarfe Managing Practical Construction Softwar_e
— Construction — £ N N — N — Construction
Construction Considerations Technologies
Fundamentals Tools
Minimizing Construction in Construction API Design Development
i ;i > > > i
Complexity Life Cycle Models Design and Use Environments

» Anticipating
Change

Constructing for
Verification

> Reuse

Standards in
Construction

> Const_ruction
Planning

Construction
Measurement

Construction
Languages

—» Codin

> Congruclion
Testing

Construction for
Reuse

Construction with

Reuse

> Cons}mction
Quality

—» Integration

» Object-Oriented
Runtime Issues

» Parameterization
and Generics

Assertions, Design
by Contract, and
Defensive
Programming

Error Handling,
Exception

>
Handling, and Fault
Tolerance

> Executable Models

State-Based and
> Table—Drl_Ven
Construction

Techniques

Runtime
—» Configuration and
Internationalization

Grammar-Based
Input Processing

Concurrency
Primitives

—» GUI Builders

> Unit Testing Tools

Profiling,

Performance
Analysis, and
Slicing Tools

16

Copyright 2020, Dennis J. Frailey

Softwa

Software Testing

Testing

_| Software Testing

r Test Levels | Test Techniques Test-Related | Test Process | Software Testing
Fundamentals Measures Tools
Based on the Evaluati
Testing- valuation .)
i The Target of Soﬂ}vare’ of the Practical Testing Tool
> Related the Test [Engineer’s Ed P Considerations Support
Terminology Intuition and Urograx; PP
Experience nder-Test
— Input Domain- Evaluation of 2
> Key Issues ?_:J:‘:wes of | > Based Ly the Tests Ly Test gz:’elfones of
SHIE Techniques Performed Activities
Rela}tlonshnp of Coda:Rased
L» Testing to Other .
5 15 Techniques
Activities

Fault-Based
Techniques

Usage-Based
Techniques

Model-Based
Techniques

> on the Nature of
the Application

Selecting and
L3> Combining
Techniques

Techniques Based

Software Testing Topics

17

UT D

Software Configuration Management

Software
Configuration
Management
Y P—— Software Software Co?l(t)'lfttlv::teion Software Software Release Coi(t)'lft:::t‘:on
M the S Cl%’[Process | [1 Configuration — Configuration — S tga tus Configuration — Management Manag entent
Identification Control Accounting Auditing and Delivery T(;gols
L e 2 Requesting, Software Softw?re
" Organizational -, Identifying |, Evaluating, and Configuration Functional Software
Context for Items to be ri— Status Configuration Building
SeM SUSHELES Software Changes Information Audit
Constraints and Softw: Implementing Software . Software
| » Guidance for ? are Software Ly Configuration | » Physical Ly Software Release
SCM Process Library Changes Status Configuration Management
Reporting Audit
In-Process
|, Planning for Deviations and Audits of a
SCM Waivers Software
Baseline
—» SCM Plan

Surveillance of

SCM

Copyright 2020, Dennis J. Frailey

Software Testing Topics

18

UT D

Software Engineering Management

Copyright 2020, Dennis J. Frailey

Software Testing Topics

Software
Engineering
Management
Softwire Software
Initiation and Software Project Software Project Review and # . Engineering
r 7 r & r 8 Closure —| Engineering
Scope Definition Planning Enactment Evaluation Management
Measurement
Tools
- B lish and
Determination . Determining o Estab'
I and Negotiation |9 Process Planning 3> Lrpgi:xnnsemanon Satisfaction of gletermmmg | 5 Sustain
of Requirements Requirements osure Measull'ement
Commitment
Software :
o . R Reviewing and Plan the
FAeasllbl‘llty ge;§m1l;el ‘;cqu;§1tlgn a:ld : Evaluating ilosu;g | Measurement
ier Contr
nalysis cliverables upplier Contrac! Performance ctivities Process
Management
Process for the Effort, Schedule, Implementation Perform the
ReV}e'w and I and Cost [of Measurement > Measurement
Revlglon of Estimation Process Process
Requirements
Resource y Evaluate
Allocation > Monitor Process Measurement
- Risk Management 3 Control Process
Quality "
Management > Reporting
L3 Plan Management

19

UT D

Software Quality

Software Quality

—

Software Quality

Software Quality
Improvement

Software
Safety

Copyright 2020, Dennis J. Frailey

Software Quality
Measurement

Software Testing Topics

Software Quality N et Practical Software Quality
| Fundamentals] g Considerations Tools
Processes
Software
Engineering Software Quality Software Quality
Culture and Assurance Requirements
Ethics
Value and Verification Defect
» Costs of and » Characterization
Quality Validation
Models and Reviews and Software Quality
— Quality o Audits —> Management
Characteristics Techniques

20

UT D

Copyright 2020, Dennis J. Frailey

What Do We Mean by
Quality?

Software Testing Topics

21

Ut D Concepts of Quality for Products

“Quality is conformance to requirements"”
Crosby

“Quality is fitness for intended use”
Juran

“Quality is value to someone”
Weinberg

Copyright 2020, Dennis J. Frailey Software Testing Topics

22

Ut D “Quality is
Conformance to Requirements”

« If testable requirements can be established, then it is

possible to decide whether the product satisfies the
requirements - by testing it.

= If measurable quality characteristics can be established,
then it is possible to decide on the extent to which the

product satisfies the requirements — by measuring it.

= Thus you can avoid disputes and have workable
contractual relationships

HOWEVER ...

Copyright 2020, Dennis J. Frailey Software Testing Topics
23

Ut D Issues with
“"Conformance to Requirements” (1 of 4)

Who establishes the requirements?
- Sponsor - The one who pays for the product
— End User - The one who will use the product
— Sales or Marketing - The one who will sell the product

— Engineering - The ones who will design and build it

- \
What the What the
end user S LUK

builds

L wants y

Planetgeek.ch

Copyright 2020, Dennis J. Frailey Software Testing Topics

24

UT D Issues with
“Conformance to Requirements” (2 of 4)

- - Flaws
Are the requirements right? I
. REQUIREMENT FLAWS
— consistent NCRY
- Com plete z :T:;t:::t:if::snms Vﬂffﬁ)

4. INCORRECT
5. CORRELATIONS NOT KNOWN / DEVELOPED

- visible i
— correct

> Who determines whether the
requirements are right?

> What if you discover a problem later on?

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Issues with
“Conformance to Requirements” (s of 4)

What about implicit vs. explicit requirements?

— Explicit requirement: pizza should be hot and flavorful

- Implicit requirements:
= comes sliced in reasonably sized pieces
= not harmful

* fits in the pizza box

Copyright 2020, Dennis J. Frailey Software Testing Topics

26

ur D Issues with
“Conformance to Requirements” (4 of 4)

What about when requirements change during the
development process?
- Who makes the changes?
— Who controls and authorizes the changes?
- Who pays for the consequences of changes?

Change Control

A crucial component in governing a system is a stringent change control
process...

Intevnal Audit Requests
Integvations Secuvi ity Changes

Chamge Contvol
\.
Special Reques!—s d\ 4

Business Pv ocess Changes u‘
Bersm loitte

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ikl “Quality is
Fitness for Intended Use”

= This definition is based on a fundamental
concept of law - that a product should be
suitable for the use that it is intended for.

= This definition accommodates the fact that
we may not be able to fully define the
requirements.

HOWEVER ...

Copyright 2020, Dennis J. Frailey Software Testing Topics 28

UT D Issues with
“Fitness for Intended Use” (1 0f4)

Who defines fitness?

— Consider a TV set

= which fithess characteristics are not
understood by

—-Typical User
- Engineer
—Sales Personnel

ooooooooo

Copyright 2020, Dennis J. Frailey Software Testing Topics

29

UT D Issues with
“Fitness for Intended Use"” (2 o1 4)

Who defines fitness?

- Consider a software program NG
L - 6soonte L
= which fitness characteristics are not B o = B 03

Lo program list

understood by W _—
—The typical software developer?

—-The inexperienced end user?
: - |
—-The experienced end user? ch R

Abes Gingerbre... change
|Dp€'|stheploglan forecing. [smzn@mz, size 32KB fee 9746 B o~ window size

4 1 ~ program ;
quick help statusbar ir?for?nation \free space on disk

o
o
g
g
2
]
=)
E
o
fus} |
= {
a)
&
g
2
g
g

selection cursor

%
B
©

He slider

=
3
a

)
]
R o

Gemtree.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 3 0

UT D Issues with
“Fitness for Intended Use”

(3 of 4)

Different users have different definitions of fithess

— Ease of use for novices

— Control of fine details for experts

— Ease of maintenance for support staff

— Able to survive power failures

— Compatibility with previous system

&
|

t Ymd(»

>

1

Theodysseyonline.com

> Uses change as users grow in experience
— Too many “ease of use” and “automatic” features may

frustrate an expert

Copyright 2020, Dennis J. Frailey

Software Testing Topics

31

UT D Issues with
“Fitness for Intended Use" (4 of 4)

The “pleasant surprise” concept
User gets more than he or she expected

They really knew what they
were doing when they
designed this software

There is often tension between the engineer
knowing better than the customer and the
customer knowing better than the engineer

Copyright 2020, Dennis J. Frailey Software Testing Topics

32

Ut D “Quality is
Value to Someone”

= This definition incorporates the idea that quality
is relative

= And it places increased emphasis on
understanding what quality means to the
intended user of the software

HOWEVER ...

Copyright 2020, Dennis J. Frailey Software Testing Topics

33

UT D
Issues with “"Value to Someone” (1of4)

How is the
y financial software?
| want hot
games

44

Whose opinion counts?

What Can it survive
ﬂ features do spilled drinks?

you want?

Does it have
Facebook and
Twitter?

»You may need to weigh different opinions

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D .
Issues with “"Value to Someone” (20f4)

Logic vs Emotion
- “Glitz"” v. "Substance”

Which Car
is Best for
Our Family?

o AMBUNOW Vika)y

Copyright 2020, Dennis J. Frailey Software Testing Topics

35

UT D .
Issues with “"Value to Someone” (3of4)

Value depends on What Features are Most Important

— Space Shuttle
= 0 defects
= Reliability

- Video Game

= Good user interface
= High performance

— School Laptop e
= Rugged
= Fast
= Good Battery Life
= Good Software

Copyright 2020, Dennis J. Frailey Software Testing Topics

36

UT D

Issues with “"Value to Someone” (4 of4)

Some Needs are Implicit (unstated)

Explicit

= I need an office

= It must have a computer
= And lots of space

=
8 J#

Implicit

I need a desk
And a chair
= And convenient electrical outlets

Copyright 2020, Dennis J. Frailey

Software Testing Topics

37

Ut D Definitions of Software Quality

IEEE: The degree to which the software possesses a
desired combination of attributes

Crosby: The degree to which a customer perceives
that software meets composite expectations

Note that both definitions imply
multiple expectations

Copyright 2020, Dennis J. Frailey Software Testing Topics

38

Summary of Quality Definition Issues

You Must Define Quality
— Before you can engineer it into your product
— ... and before you can measure it
— ... or test whether the product has the desired quality attributes

Quality has Multiple Elements
— It reflects a multitude of expectations

Quality is Relative
— Quality is in the eye of the customer

Quality encompasses fitness, value, and other attributes

Copyright 2020, Dennis J. Frailey Software Testing Topics

39

So How do We Test or Measure Quality?

= We will cover this in Part 2.
= But first, a few more thoughts about testing.

Copyright 2020, Dennis J. Frailey Software Testing Topics

40

UT D

Observations on The Overall
Testing Process

Copyright 2020, Dennis J. Frailey

Software Testing Topics

41

ut b Test and Evaluation

Evaluation: Appraising a product through one of the
following:

— Examination, analysis, demonstration
— Testing
— or other means
Testing: Exercising a system to improve confidence

that it satisfies requirements or to identify
variations between desired and actual behavior.

[“Evaluation” is the broader term. J

Copyright 2020, Dennis J. Frailey Software Testing Topics

42

Ut D Testability

A product is testable if:
— It can be tested in a reasonable way (readily testable)
— The tests are well defined, comprehensive, and not overly redundant

— Each test can be directly traced to and from:
= product requirements,
= derived requirements resulting from design decisions, or
= design or coding elements calling for specific testing

— Each test failure can be directly traced to:
= a requirement that is not being met, or
= A design element that was not properly implemented, or
= A portion of the code that has a programming error

[Good testing starts with testable]

requirements and designs.

Copyright 2020, Dennis J. Frailey Software Testing Topics
43

Ut D Testing is unsuitable when ...

= It would destroy the product
= Itis too dangerous
= Itis too costly

= It cannot reasonably be expected to provide
confidence that requirements are satisfied

= It cannot be done

Copyright 2020, Dennis J. Frailey Software Testing Topics

44

UT D Evaluation Techniques
(other than testing)

= Examination

— For example, reading designs or code or other
documents to check for errors

= Demonstration
- e.g. flying an airplane to show that it can fly
— e.g. running a program to show that it works

= Other techniques (examples)
- providing a formal proof that a program is correct

- showing through statistical analysis that the
probability of a defect is below a threshold

Copyright 2020, Dennis J. Frailey Software Testing Topics

45

UT D

The Steps Involved in a
Good Testing Process

= Preparation
= Test Execution

= Repair of defects (debugging)

Copyright 2020, Dennis J. Frailey Software Testing Topics

46

Ut D Test Preparation Activities

= Making sure that requirements are testable

= Making sure that designs are testable

= Developing test plans

= Developing test cases

= Writing testable code

= Writing test code (or programming test machines)

= Devising procedures for testing, inspecting and
reviewing of results

These activities begin as requirements are being defined, and
continue throughout the development process

Copyright 2020, Dennis J. Frailey Software Testing Topics 47

UT D

Reasons why Requirements/Designs
May be Hard to Test

Requirements may not be well understood
Requirements may not be well documented

What seems obvious to the customer or the system
designer may not seem clear or obvious to the software
developer or tester

— Different kinds of knowledge
— Unstated assumptions

The customer and the software developer may not agree on
what constitutes an acceptable test

Changes made during software development may not be
communicated to the software team

Copyright 2020, Dennis J. Frailey Software Testing Topics 48

urt D Suggestions (slide 1 of 3)

= A requirement or design feature is not complete until
you have reached agreement on how it is to be tested

- For each requirement, reach agreement between the software
team and the customer or system engineer on how the
requirement is to be tested

— For each design feature, reach agreement between the software

designer and the software test team on how the design feature is
to be tested

Testable Requirements

Copyright 2020, Dennis J. Frailey Software Testing Topics

49

urt D Suggestions (slide 2 of 3)

= Control changes to requirements and design

- Don't allow a requirements or design change without a clear
understanding of the effect of the change on the software cost,
schedule and technical development

— For each change to requirements or design, indicate how the
corresponding tests must be changed.

gﬁﬁge CHANGE EVAL UATE CHANGE
REQUEST TECHNICAL, COST & APPROVAL | MPLEMENT

i"”f’ of 00 CUMENTED SCHEDULE IMPACT P CHANGE
v SPONSOR FORMAL INTEGRATE

APPROVAL EVALUATION OF CHANGE INTO
For SYSTEM MPACT priciegiual
Lawger, DO CUMENTS
More Compiiex
Proyjects

CHANGE
FUNCTIONAL Researchgate.net
CONTROL BOARD
REVIEWS [—J~

RECOMMENDATION

Copyright 2020, Dennis J. Frailey Software Testing Topics

uTt D Suggestions (siide 3 of 3)

= Keep track of which tests correspond to which
requirements or design elements (traceability)

Ideal
Requirement 1 €*"\—-———) Teast 1

Acceptable
Requirement 1
Requirement 2 Test A
Requirement 3

Copyright 2020, Dennis J. Frailey Software Testing Topics 5 1

UT D

Other Traceability Options

Less Desirable

Test 1
Requirement A Test 2
Test 3

Undesirable

Test A
Test B
Test C

Requirement 1
Requirement 2
Requirement 3

Copyright 2020, Dennis J. Frailey Software Testing Topics

52

Reasons Why Code May Be Difficult to Test

Code is not well structured
— Needlessly complex
— Poorly organized

We will address this in
parts 3 and 4

Code elements do not trace directly to requirements or
design elements

— So when the code causes a failure, it is hard to determine whether
the problem is with the code or the design or the requirement

Code is not well documented or does not follow coding
conventions

— Hard to understand
— Error prone

Copyright 2020, Dennis J. Frailey Software Testing Topics
53

urt D Sample Outline of a Test Plan

= Summary of Major Testing and/or Integration Steps

= For each test and/or integration step:
— Purpose / goal of the step
- What equipment is needed and what configurations must be set up
- What hardware elements will be integrated/tested at this step
— What software components will be integrated/tested at this step
— Test cases to be performed (in order, if order is important)
» For each test case:
— what requirements will be tested and/or purpose of the test

— what procedures should be followed
— what results are expected

Ideally, this is started at the beginning of a project, with
details filled in and revisions made as the project progresses

Copyright 2020, Dennis J. Frailey Software Testing Topics 54

Sample List of Test Cases

S2R1 Get GPS Data Pull the GPS data from the processing unit The data should match the values given by the GPS receiver.
OR, if a GPS receiver is not available, then the data should
match the canned data provided for testing purposes.
S2R2 Get Radar Data — Raw A/D Samples Pull the radar data from the processor. Format The data should match the values given by the processor.
(reduced range swath) expected is the raw A/D samples (Details TBD.)

S2R3 Get Radar Data — Decimated A/D Pull the radar data from the processor. Format The data should match the values given by the processor.
Samples (full range swath) expected is the decimated A/D samples. (Details TBD.)

S2R4 Get Radar Data — Pulse Compressed Pull the radar data from the processor. Format The data should match the values given by the processor.
Data expected is the pulse compressed data. (Details TBD.)

S2R5 Get Radar Data — CPI Range-Doppler Pull the radar data from the processor. Format The data should match the values given by the processor.
Maps expected is the CPl Range-Doppler maps. (Details TBD.)

S2R6 Get Radar Data — Post NCI Range- Pull the radar data from the processor. Format The data should match the values given by the processor (Details
Doppler Maps expected is the Post NCI Range-Doppler Maps. TBD).

S2R7 Get Radar Data — Exceedence Regions Pull the radar data from the processor. Format The data should match the values given by the processor (Details

expected is the exceedence regions. TBD).

S2R8 Get System Health Information Pull the radar data from the processor. This can be System Health information

a dummy dwell, but we need to check the header
information to ensure the system health status is
working.

Copyright 2020, Dennis J. Frailey

Software Testing Topics

55

UT D Test Execution Activities

= Conducting tests
= Conducting reviews of test results
= Conducting inspections of procedures or code

[These are the steps where actual testing is performed.]

How to describe

SOFTWARETESTING? %,

Copyright 2020, Dennis J. Frailey Software Testing Topics

56

UT D

= Debugging (finding the cause of each test

failure)

Repair Activities

= Correcting errors

= Rerunning tests, inspections, etc.

These can be very expensive activities if
testing is not planned and performed well.

Copyright 2020, Dennis J. Frailey

4 Re-running of tests can add

&

significant cost and time to a
project

~

J

Software Testing Topics

57

UT D

Measuring the Progress of a
Testing Activity

Copyright 2020, Dennis J. Frailey

Software Testing Topics

58

UT D

Testing Requires Resources

Resources are entities required in order to perform software
processes and produce software products

— People

— Computers
— Software
— Networks
- Time

Resources usually cost money

» We want to use them efficiently -
not waste them.

> And we want them to be available!

Copyright 2020, Dennis J. Frailey Software Testing Topics 59

Some of the Things We Wish to Know About
Testing Resources

= Are they available as required?
— Staffing levels / employee turnover rates

— Training (frequency, suitability)

- Equipment and software availability

— Network bandwidth

= Are they performing as desired?
— Are testing facilities and tools working well?

— Is the training effective?

= Are the resources being used efficiently?

300 -

250 A

200 A

150 A

100 -

50 -

— Are we on schedule? Will the project be on time?
— Are we over or under our budget?

— What is our productivity?

Copyright 2020, Dennis J. Frailey

Software Testing Topics

I Daily Completed

012 34567 8 91011121314151617 181920

60

Resource Measures are Important for

Managing a Project

= They tend to be focused on costs and schedules
relative to plans or deadlines

= For example many projects use a work
breakdown structure to measure project

progress

= Other examples of resource measures that tell

us about project status

— Earned value / Burndown Charts

— PERT and GANTT charts (project status and plans

— Employee or network workload measures

— Employee or equipment availability measures

Copyright 2020, Dennis J. Frailey

Software Testing Topics

Task Name

= Product Development
+ Develop Project Team
- Planning
+ Define Development Environment
+ Define Functional Level Requirements
- Development Environment Setup
Setup workstations at chosen location
- Design
~ Database Design
Identify Database Requirements
Identify Database Entties
Document Database Design
Design Database Entties
- Aigorithm Design
Donor Notification Algorithm
Fundraiser Suggestion Algorithm
+ Interface Design
- Development
+ Database Architecture
Mobie Donation Interface
Facebook App
+ uRaiSe Web Site
+ Web Services
= Notification Services
Email
ES
Twitter
Facebook
- Testing
Integration Testing
System Testing
Acceptance Testing
Alpha Testing
Beta Testing

Duration

310 days
30 days
14 days
10 days
14 days

3days
3days
48 days
12days
1 day
3days
3days

5 days
5days
5 days
5days
48 days

110 days
10 days
10 days

5 days

110 days

20 days
2days
1 day
2days
2days
2days

108 days
30 days
30 days
25 days
25 days
25 days

Tutorialspoint.com

Start

Mon 111011
Mon 111041
Mon 272111
Mon 2/21/11
Mon 22111
Fri 3111
Fri3ni
Fri 3111
Fri 3111
Fri3ni
Mon 31411
Thu 317111
Tue 372211
Fri 31111
Fri3nin
Fri3nim
Fri 3111
Wed 5118111
Wed 5118111
Wed S18/11
Wed S18/11
Wed 5118111
Wed 5118111
Wed 5118111
Wed 51811
Wed 51811
Wed S/18/11
Wed S18/11

Wed 10119111

Wed 1011911
Sat 10222/11
Frit22111
Fritein2
Fri2i012

Finish

Thu 315112
Fri 24811
Thu 31011
Fri 314111
Thu 314011
Tue 314511
Tue 315/11
Tue 5147/11
Mon 3/28/11
Fri3f1n1
Wed 31611
Mon 3721/11
Mon 3/28/11
Thu 314711
Thu 31711
Thu 31711
Tue 5147/11
Tue 104811
Tue 5/31/11
Tue 3111
Tue 524111
Tue 10/48/11
Tue 6/14/11
Thu 5149/11
Wed S/18/11
Thu SH9M1
Thu 519111
Thu 519/11
Thu 345112
Mon 11728/11
Thu 12/1/11
Th 1/5/12]
Thu 2//12|
Thu 3115112

1

Resource Measures Often Measure People

= This can lead to problems if people are not measured
fairly

— People are very sensitive to fairness of measurements

= Productivity of people is an especially problematic
thing to measure

— The person doing the hardest job tends to look like they
are making the least progress

= Even measuring things like defects can be misleading
when applied to people

— The person developing the most complex part of the software
tends to have more errors

— The person testing the most difficult part of the software tends
to discover the most defects and to take the most time

Copyright 2020, Dennis J. Frailey Software Testing Topics 6 2

UT D Measure Processes, Not People

= It is important to measure things that affect
productivity of people, such as:

—Training - is it accomplishing what we want it to accomplish?
—Turnover (planned and unplanned)

— Resource utilization

— Resource availability

— Staffing level

— Effectiveness and usability of processes and procedures

= People will usually cooperate if you try to make their
jobs more efficient

» But they will resist if you find ways to blame them

Copyright 2020, Dennis J. Frailey Software Testing Topics

63

UT D

Resource Measures
Testing Progress

Measuring testing progress helps us predict schedule.

50

Units Tested

40

30

of 7 —
Ve —
// = :/

Tested

20

- Plan

-=— Actual

—— Makeup Plan

— Projection

Copyright 2020, Dennis J. Frailey

2 3 4 5 6 7 8 9 10 11 12 13

Wee
Today Deadline

Software Testing Topics

64

UT D

The Metric Should Not Be the Goal!

Suppose your goals are
- Good (effective) testing
— Efficient testing
Good uses for a testing progress metric:

— Identify problems in testing and use the information to find
and fix the underlying problems

= Perhaps the test code isn’t very good
= Or perhaps there are equipment problems

= Or perhaps you incorrectly estimated the difficulty of testing
your software product

Potentially bad uses for a testing progress metric:
— Criticizing people for not meeting the deadline
— Rewards for the most tests done per week

Copyright 2020, Dennis J. Frailey Software Testing Topics

65

UT D Using Testing Progress Metrics Improperly
Wrong Performance Goals

= Real goal: good, efficient testing

= Performance goal for testing team:
— more tests complete per week

= Potential consequences:

- Team makes tests simpler (and less effective) so they can
get more tests done per week

— Team focuses on testing quickly instead of testing
thoroughly and effectively

— Team creates smaller test cases rather than what makes sense

Time is wasted improving the numbers
instead of improving the testing

Copyright 2020, Dennis J. Frailey Software Testing Topics

66

Ut D Using Testing Progress Metrics Improperly
Measuring Individual Performance

If you measure testing progress for individuals you
might encourage people to ...

- Run the easiest and least effective tests in order to get
more tests complete per week

— Cut corners (skip parts of the testing process) when doing
testing in order to get more tests done each week

— Use tools in ways that mask inefficiency
= Making it appear they have done more than they actually have

— Test only the least complex parts of the software

And you might reward the wrong people — the ones who run the most
tests, not the ones who do the most effective testing.

Copyright 2020, Dennis J. Frailey Software Testing Topics 67

Using Testing Progress Metrics Properly

= Use the Test Progress metric as an indicator of your
true situation
— If there’s a problem, fix the problem a
- don't o = 4
= pretend it isn’t there

= encourage people to cover it up
= blame people

= Focus on the test processes and procedures
— Are your tests being developed properly?
— Are your tests being run properly?
— Are you properly estimating the time required for testing?

= Enlist the aid of the software team to analyze the
problems and make improvements

Copyright 2020, Dennis J. Frailey Software Testing Topics

68

UT D

Seeding and Tagging
A simple and effective way to
assess Testing Progress

Copyright 2020, Dennis J. Frailey Software Testing Topics

69

uTt D Seeding and Tagging

Purpose: To help you estimate how many undetected
errors (defects) are in your code

When to do this: During test planning and during the
testing process

Suppose: You have been testing your code and have
discovered D, errors (defects).

Question: How many errors are left?
Technique: Seeding and Tagging

Concept: Introduce extra errors and see how many of
them your test process has found.

Copyright 2020, Dennis J. Frailey Software Testing Topics

70

Ut D Overview

1. Inject extra errors
before testing starts

2. See how many of those errors you find during
the normal testing process

Copyright 2020, Dennis J. Frailey Software Testing Topics

71

Ut D Seeding and Tagging Details

= Introduce a given number of extra errors into the
software -- say E of them

= Run standard tests, detecting D, of them
= Compute D,/E = % of errors detected

= Suppose D; = number of genuine errors
already detected

= Then you assume the total number of errors in the
software is

(_D*E/D,)

Copyright 2020, Dennis J. Frailey Software Testing Topics

72

UT D

Example of Seeding and Tagging

200 defects found so far
You have injected 20 extra defects
You have found 12 of these extra defects

Therefore, assume total defects =
200 * 20/ 12 = 4000 / 12 = 333 total defects

=> 333 - 200 = 133 defects remaining

4 By performing this analysis from time to time,
you can estimate your defect density and your
testing progress over time.

Copyright 2020, Dennis J. Frailey Software Testing Topics

73

UT D
UT Dallas

Software Quality and Software Testing

Part 2 - Measuring Software Quality

Copyright 2020, Dennis J. Frailey Software Testing Topics

74

Ul D Quality Attributes are

Seldom Directly Measurable

e

= Fitness for intended use

= Value to someone

= Satisfaction of requirements
— Including implicit, unstated requirements

= Maintainability

= Reliability

= Supportability

How can
= these be
measured?

= Testability

[We need to find suitable ways to measure]

these attributes.

Copyright 2020, Dennis J. Frailey Software Testing Topics

75

UT D Some Attributes Are Measurable

Examples
— Water boils at 100° Centigrade

- My new application will complete at least 10 searches per
minute

— Code written in C takes less memory space than code written in
Python

The above statements may or may not be true, but they
can all be tested because they are all measurable.

| think that THIS I think THIS is the reason | think THIS is a good way
is the problem. we're having the problem. to test if the guess is right.

IT STARTS WITH THAT LEADS TO AN THAT CAN
A QUESTION EDUCATED GUESS BE TESTED

Elicitinsights.com

Copyright 2020, Dennis J. Frailey Software Testing Topics

76

UT D Some Attributes are Not Measurable

Examples:
— Joe’s code is better than Jan’s code
— Lisp is a superior programming language to C#

— Object oriented design produces code that is more
maintainable

The above cannot be measured unless we define what
we mean by:

— Better than

— Superior >— In a measurable way!
- Maintainable

ey

Copyright 2020, Dennis J. Frailey Software Testing Topics 7 7

Ut D Surrogates

In order to measure an un-measurable attribute
— such as “quality” or "maintainability”

We may need to measure indirectly
— we measure something else that is associated with that attribute
— such as “defects” or “repair cost”

This alternative, measurable attribute is called a
surrogate.

Copyright 2020, Dennis J. Frailey Software Testing Topics

78

Ut D Surrogates Are Not the Real Thing

A surrogate may or may not accurately reflect the
desired attribute

Examples:
- Defects are a common surrogate for quality

— But lack of defects may or may not reflect quality.
= Lack of defects may reflect failure to do effective testing
= Or failure of the customer to use the product

— Repair cost may or may not reflect maintainability of
the software

= Perhaps “repair” included many changes to the software to
add new features

= Or perhaps the maintenance staff are not competent

Copyright 2020, Dennis J. Frailey Software Testing Topics

79

Ut D There Are Systematic Ways to
Identify Surrogates

= Decomposition Approaches
— Fixed models [cuatyFacer
— Individualized models

= Standardized Approaches

— These enable comparisons of software
from different organizations

— But may not fit the desired quality
characteristics of some software

There is little consensus on how to measure quality
attributes, so most organizations define them in ways
that fit their specific customer needs.

Copyright 2020, Dennis J. Frailey Software Testing Topics 80

UT D

Decomposition Approaches

Boehm Software Quality Model

. a

e

erensy

Engineering

.

General Utility

Maintainability

| Understandabiity

Device
Independence

Self Containedness

Modifiability f———

Copyright 2020, Dennis J. Frailey

| Self Descriptiveness |

| Structuredness

| Conciseness

| Legibility

Augmentability

Software Testing Topics

~

The concept
here is to
decompose
quality
attributes or
factors into
subfactors
until you
find factors
that are

measurable.

_ J

81

UT D A Closer Look at the Boehm Model

. Quality Measurable
Primary Uses Factors Quality Criteria
General Utility Portability Device Independence
As-is Utility Reliability Completeness
Efficiency Accuracy
Human Consistency
Engineering
Maintainability Testability

Terminology

Understandability [Fenton’s]

Modifiability

Copyright 2020, Dennis J. Frailey Software Testing Topics 8 2

UT D Comments on Boehm’s Model

= This is a way to decompose what we mean by
“quality” until we have measurable attributes
(quality criteria)

= These quality criteria are surrogates for quality
— There are many of them

— Some of them relate to multiple quality factors

Quality Measurable
Factors Quality Criteria

Portability
Reliability l{ Completeness

Software Testing Topics

Copyright 2020, Dennis J. Frailey

UT D

Decomposition Approaches
McCall Software Quality Model

Metrics

(")

As you can
see, it's
possible to
establish a
lot of
criteria
related to

Quality Quality
Factors Criteria
Correctness ['aceability
QCompleteness
Reliability :Consistency
/ \Accuracy
Product Eficienc Error tolerance
Operation i H&Execution efficiency —————
\ Inte grity ______h__-_h_-Eu‘torage efficiency ———
\Access control
Usability \Access. gudit
\Operablllty
\Training
Maintain ability Communicativeness
/ 5 Simplicity
Rpéigg; Testability "~ Conciseness
\ Instrumentation
Flexibility ~Self-descriptiveness
Expandability
Generality
/ Paortability Modularity
Product — ~—3Software system independence —
Transttion \ Reusability 7™ Machine independence —————

Interoperability

Communications commonality —

Data commonality

Copyright 2020, Dennis J. Frailey

Software Testing Topics

_ quality)

84

UT D

McCall Model - Quality Factors
Criteria

and (Measurable)

Correctness —] Traceability]
% Completeness]

i EQ = I
Accuracy]

Efficiency 4\1 Error tolerance |
Execution efficiency |

- \ Storage efficiency |
Integrity % Access control]
Access audit |

Usability Operability]
Training]

Maintainability Communicativeness]
Simplicity |

Testability Conciseness]
Instrumentation |

Flexibility Self-descriptiveness |
Expandability |

Portability Generality '
Modularity]

= Software system independence |
Reusability ~ Machine independence |
/ Communications commonality |

Interoperability f’/: l

Data communality

Copyright 2020, Dennis J. Frailey

Software Testing Topics

relate to
multiple
quality

\ factors

/ As with the \

Boehm model,
some criteria

J

85

Ut D Do I Really Need to Measure
So Many Attributes?

= The various models tend to be comprehensive

— But you may need to use only a portion of a model for your
specific situation

- Ultimately you need to measure only what will actually
be used and be useful

Copyright 2020, Dennis J. Frailey Software Testing Topics

86

UT D

Measures of Software Quality
Based on

Defects or Faults or Failures

Copyright 2020, Dennis J. Frailey Software Testing Topics

87

Ut D Quality = Lack of Defects
(or Lack of Faults or Lack of Failures)!?

The advantage of this approach is that it is often easier to test
for defects or failures and easier to measure them
than many other measures of quality

— However this approach may not capture what quality means to
the end user

= Ease of use
= Speed
— And it may not reflect all that the developer considers important
= Maintainability
= Supportability

- ' Defects and faults usually mean the
same thing — causes of failures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 88

— Defect Density!?

Number of Defects
Size of Software Product

Defect Density =

Variations:
— Failure Density (instead of defects)
— Number of Defects (this can be defined in different ways)

= Known Defects
= Total Defects (Known Defects + Latent Defects?)

— Size of Software Product (can be defined in different ways)
= It depends on the definition of size

1Sometimes called “defect rate”, although this is inaccurate
2 Latent defects are defects we have not yet discovered

Copyright 2020, Dennis J. Frailey Software Testing Topics 89

Ut D Defect Density Advantages

= Easily measured, compared with other options

= Gives a good, general idea of the overall quality of the
software

= This measure has been used for over 50 years to
measure software, and overall the defect density has
correlated well with perceived quality of products

Defect Density vs. LOC

8 W

10

8
>5§
y
)

@
s

s/Size)

IS

Productivity (size/Effort
Defect Density
Number of Defi i

g

Defect Density {defects/kLOC)
i
2

o
o

(=]
O

. °
200 400 600 800 1000 2 i 2 SR DA (S Hat0 s 1
LOC under review Time (Months after Go-live)

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Defect Density Drawbacks
(1 of 3)

= People can’t always agree on what constitutes a
defect
— Failure in operation vs mistake in the code
— Post-release defects vs defects found during development
— Discovered vs latent defects

= Severity of problems caused by defects may be hard
to assess
— Some software defects have no significant impact on
customer’s perception of quality
— Different customers use the software in different ways

Copyright 2020, Dennis J. Frailey Software Testing Topics

91

UuT D Example from IBM?

= Approximately one out of three defects will only
cause a user failure once in 500 years.

= A very small portion of defects (<2%) cause the
most important user failures

~ A
Number of defects may not be strongly

correlated to the frequency or severity

of end user failures.
_ Y.

1 See Adams in reference list.

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Defect Density Drawbacks

» Different measures of the

time scale

— Amount of time since
release of product

(2 of 3)

- Amount of time the product

is actually used

— Processing time actually
used by the product

Copyright 2020, Dennis J. Frailey

Release Purchase Installation First F!rst
Use || Failure
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug
No Not yet.
problems But we only
with the use it once a
software? year.

7o

so

so

ao

Ti s

=0

=20

10

o

Cyvole Stee

167 250 === al1es aso s8> e6s 7as =31

Software Testing Topics

Researchgate.net

UT D

Defect Density Drawbacks
(3 of 3)

= Different measures of size

— This can make it hard to compare different projects or processes

or development methods or organizations

SOFTWARE SIZE (MILLION LINES OF CODE)

Source: NASA, IEEE, Wired, Boeing, Microsoft, Linux Foundation, Ohioh

Modern High-end car

Facebook

windows Vista | NN
Large Hadron Collider
Boeing 787 NN
Android [EGEGNG
Google Chrome [l
Linux Kernel 2.6.0 |l

Mars Curiosity Rover [}
Hubble Space Telescope [}
F-22 Raptor |}

Space Shuttle |
0

10

80

90

Copyright 2020, Dennis J. Frailey

Software Testing Topics

94

D
- What is Defect Density Telling Us?

= The quality of our software
product?

Or

* The effectiveness of our defect
detection and correction
process?

Copyright 2020, Dennis J. Frailey Software Testing Topics

95

Ut D Despite These Drawbacks, Defect
Density is Very Widely Used

Some metrics that incorporate defect density
— Cumulative defect density
= During development or after delivery
— Total serious defects found
— Mean time to fix serious defects
— Defects found during design reviews per KLOC
— Code inspection or peer review defects found per KLOC
— System test errors found per KLOC
— Customer-discovered problems per KLOC or per product

Copyright 2020, Dennis J. Frailey Software Testing Topics

96

UT D

Usability
Hard to Test For & Hard to Measure

4 Formal Definition:)

Usability is the degree to which a system can
be used by specified users to achieve

specified goals with effectiveness, efficiency

and satisfaction in a specified context of use.
_ ISO/IEC 25010 (2011) /

Commonly used concepts of usability:
— User Friendliness
— Ease of use

This is a very complex concept that is hard to
measure, but important to most end users

Copyright 2020, Dennis J. Frailey Software Testing Topics

97

Ut D Three Categories of Usability?

= Effectiveness
— Can users complete the tasks correctly?
Quantity *Quality
100

— Example: Effectiveness =

= Efficiency
— Time required to complete the tasks

Effectiveness

— Example: Effici =
P reiency Task Time

= Satisfaction

— Degree to which the end user likes the software
> This is a very subjective measure

1 See Fenton, section 10.3 for further details

Copyright 2020, Dennis J. Frailey Software Testing Topics 98

il Internal Attributes Generally Viewed as

Related to Usability

These are more readily measured and
can be measured before the software is released

= Good use of menus
= Good use of graphics
= Good help functions

= Consistent interfaces

& Researchers have been

to effectiveness, efficiency or

\ customer satisfaction.

~

unsuccessful in relating these

J

= Well-organized reference manuals and help files

[Use of these to predict usability is not recommended.]

Copyright 2020, Dennis J. Frailey

Software Testing Topics

99

UT D
UT Dallas

Software Quality and Software Testing

Part 3 - Software Reliability

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 00

Ut D Contents

Introduction

Measuring Reliability

Software Reliability Issues
— Measuring Time
— Application Characteristics

— Reliability Growth

Summary

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 1

UT D

Introduction

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 2

UT D Reliability is the "Bottom Line” of
Software Quality

= Reliability is the most conspicuous attribute
of quality

= But what do we mean by reliability?

N
End-User's Perspective What can be Measured
* It does what I want * It does what was specified
* It never fails * Failure rates are low
\:efc. P \:efc. P
Not a Perfect

Match

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 03

UT D Reliability is Not Correctness

= Reliability means that it does what you want
it to do often enough to be satisfactory

Whereas

= Correctness is a binary, “"yes or no”
condition

= Software is almost never perfectly correct
— But it can be highly reliable

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 04

SilD Hardware Reliability Theory

Focuses on Materials and Production

= Assumption: failure usually results from physical effects
- breakage, wearout, fatigue, corrosion, overheating, shock, ...

= Or incorrect manufacturing processes

= The theory of hardware
reliability is founded on the
assumption that these are
random events

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 5

UT D But Product Design and Development
Can Also be Factors in
Quality & Reliability

S ® N
DEFINE ASSESS IDENTIFY N /QUANTIFY DELIVER N /MONITOR
Reliability Objectives Design Reliability Reliability Gaps Verify & Grow Reliability Target Reliability = Field Reliability:

Concept Development & Testing Manufacturing Support
(®) Reliability Allocation
(®) Baseline Reliability
@) FMRA
) -
©) Risk & Safety (®) System Testing
L ©) pFrmEA ®) subsystem Testing L
o) - : @)
I8 (®) Change Point Analysis @) Reliability Growth L &_.,/Warrlanty
®) Requi ts & Goal . ®)Maintenance Plan
5 K&“" e VS @ Accelerated Testing =
L & Environment & Usage @) Component Testing ©)Field Testing
(®) Existing Data/Knowledge H

(©)DFR Plan

Wideanalysis.co.uk

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 6

ur D Poor Design & Development Practices
Can Lead to Hardware Failure

= The design may put undue strain on a part
— Example: frequently used key on keyboard
= Wears out sooner than the rest of the keyboard

= Was the failure due to a faulty key?

— or to the design of the keyboard, causing
excessive wear on that key?

= What if the product wasn't properly tested?

— Car overheats in the desert (never tested that
severely)

Copyright 2020, Dennis J. Frailey Software Testing Topics

i) poor Software Development Practices

Can lead to Failure

Software failures are often attributable to
software development practices

—Requirements | T

- Design
- Testing
- Coding

— Configuration
Management

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 08

UT D Software Reliability

"The extent to which software correctly
performs the functions assigned to it"

= Failure: The software does not do what it is
supposed to do

= Defect or Fault: The reason for the failure
— Bad code/data/design/requirements
— Bad configuration control
- efc.

But as we will see, not all failures are
due to defects in the software.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 09

uT D
Ways to Improve Software Reliability

§|

www.softwarereliability.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 0

ur D Improving Software Reliability
Option 1

Design software to be fault tolerant

— Redundancy
— Multiple algorithms

= This approach has been shown to have very
little effect on overall software reliability

— The redundant code introduces more chance of
error

> It is a better fit to the hardware paradigm
that involves fatigue of parts

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 1

ur b Improving Software Reliability

Option 2

Develop software to be free of defects

— Prevention activities Cost of Quality
— Detection activities Analysis

= This is where software experts usually concentrate
their efforts

= Being free of all defects is not usually possible to
achieve

= But with modern techniques of testing, quality

assurance and quality engineering, it is possible to
make defects relatively uncommon

Copyright 2020, Dennis J. Frailey Software Testing Topics

112

Ut D But Many Failures Are Not Due to
Defects in the Software

Possible Causes of Software Failures

(other than defects):
— Incorrect or changing requirements

— Lack of user involvement in defining the
requirements

— Unrealistic expectations

— Operator error

— Poor communication between users and developers
— Confusing or inadequate documentation

— Unexpected hardware failures

— Unexpected interaction with other software or
systems

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 3

Ut D Improving Software Reliability
Option 3

Study how software fails and focus on
understanding failures
Examples of issues:

- Some failures are caused by unexpected
interactions with other systems

- Some failures occur because the problem
is not well understood

- Over time, software tends to become
more reliable

» This is known as Reliability growth

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 4

i) Sometimes Failures Are Due to Complex
Causes :

The Dissapearing Warehouse

1. A major retail company had been shutting
down some of its warehouses to save
money.

2. A defective software program somehow
erased a warehouse from the system, even
though it was still active.

3. Goods destined for the warehouse were
automatically rerouted elsewhere

— Goods in the warehouse just stayed there

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 5

Ut D The Disappearing Warehouse (continued)

4. For three years, nothing arrived at or left
the warehouse

— The employees at the warehouse said nothing
because they feared their warehouse would be
shut down and they would lose their jobs

5. The employees kept getting paid because
the payroll was handled by a different
computer system

6. When upper management finally figured
out what happened, they fixed the problem
and continued operation as usual

- They were embarrassed to let anyone know of this
mistake

Copyright 2020, Dennis J. Frailey Software Testing Topics

116

UT D

Measuring Reliability

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 7

The Goal of Measuring Software Reliability

g To Predict When h
or How Often
_ the Software Will Fail |,

This is the information need.

Note that we assume it will fail but want
to know how often or when.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 8

Ut D The Problem of Measuring Reliability

= We cannot know when the software will fail
— Unless the failure was designed into the software
= So the best we can do is to predict failure in
terms of probabilities
- In a given time period:
= How likely is it to fail?
= How likely is it to function without failure?

- On average:
= How soon will it fail?

The theory of reliability is based on
analysis of probabilities.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 9

UT D Note about Terminology

= Terminology for the various functions and other
concepts discussed here tends to vary among
statisticians and reliability experts

= The terminology we use in these slides matches that
used in Fenton’s book

= But from time to time we will mention other
terminology that is often used

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 20

UT D o
Definitions

Failure

— When the product does not do what it is expected to do for a
given set of input or operating conditions.

Fault (depends on author)
— A condition that causes failures.

Defect (depends on author):
— A fault found before / after product release
— Any cause of failure
— Any error, regardless of whether it is caught before release
— Other terms: bug, mistake, malfunction, etc.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 2 1

UT D More Definitions — Failure Rate

Failure Rate (1) - the rate at which failures occur
— In some cases, A is a constant, such as "3 failures per thousand

hours of operation”.

— In other cases, it is not a constant
> It is often expressed as a function of time:

A(t) = <some equation involving t>

_

In both cases,)\ represents the
most probable value,
based on

what is known about the system and its operation.

J

Copyright 2020, Dennis J. Frailey

Software Testing Topics

122

More Definitions — Mean Time to Failure

Mean Time to Failure (MTTF) () - the time

when the first failure is expected to occur (on
average)

- In some cases, [is a constant, such as “520
hours”

— In other cases, it is not a constant
> It is often expressed as a function of time:

A(t) = <some equation involving t>

4)

In both cases, @ represents the
most probable value,
based on what is khnown about the system and
\ its operation. y

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 23

UT D The Relationship Between
Failure Rate and MTTF

=1/ A :I- If it is a constant
Or

B(t) =1 / A(b) :I— If it is a function

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 24

— What is Reliability?

Reliability is the probability that software will
continue to function correctly (without failure)

for a given time period
under given conditions

— The time period can be measured in natural units or time
units

= Natural unit - something that measures the amount of
processing performed by the software, such as “"runs”, pages
of output, screens displayed, jobs completed, etc.

= Time units - hours, minutes, days, weeks, etc.

Reliability can also be measured as failure
intensity — the number of failures expected
per natural unit or time unit

Copyright 2020, Dennis J. Frailey Software Testing Topics

125

Ut D Measuring Reliability via

Probabilities

If reliability is measured in terms of a time
interval, denoted ¢, then

— t is a random, failure free time interval.
- We would like to know: how long is t?

= In other words, how long will the software function
without failure?

— But since we cannot know this, we can only
estimate the probability of failure for a given
value of t.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 26

Ut D Reliability is Usually Expressed as a
Function:

R(t) = probability of operation without failures
intime t
(i.e., in the interval 0-t)

For hardware reliability theory, there are three
important assumptions about failures:

1. The system is functioning correctly at time 0
2. Failures occur randomly

3. Failures occur at a constant rate, that depends on the
specific hardware. This rate is usually represented by the

symbol A

Copyright 2020, Dennis J. Frailey Software Testing Topics

127

UT D Discussion of These Assumptions
As They Apply to Software

1. The system is functioning correctly attimet =0
— This assumption makes sense for hardware and software

2. Failures occur randomly
— This assumption makes some sense for hardware but not
necessarily for software
3. Failures occur at a constant rate, A

— This assumption may not make sense for hardware because,
as hardware ages, failures are more common

— This assumption makes little sense for software because of
reliability growth (see later slides)

— So for both hardware and software, we often represent failure
rate by a continuous function f(t) rather than as a constant A.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 28

Ut D Reliability is Exponential if All Three
Assumptions are True

R(t) = probability of operation without
failures in time interval O-t

(_RB)zeM

A is the failure rate, which is constant according to
assumption 3.

This can also be expressed as:

(_R)=et=)

= 1/) is the mean time to failure

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 29

Uur D The Exponential Failure Rate is Very

Convenient for Analysis

As we shall see, there are many relativel

Yy

simple ways to analyze exponential data

" But software failures may not
occur randomly or at a

g constant rate

\

J

-

_

Nevertheless, the exponential failure rate is
useful in studying software reliability.

\

Copyright 2020, Dennis J. Frailey Software Testing Topics

130

Why Is Exponential Failure Rate Useful
for Understanding Software Reliability?

1. The well-established theory of hardware reliability,
which assumes exponential failure rates, provides a
= framework

and a set of
= terminology and concepts
that can be applied to non-exponential situations

2. The exponential case is relatively easy to explain so
it’s good for training and education

3. Exponential rates often help with analysis of software
situations even if the failure rate isn’t exponential .

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 1

il Graph of Exponential Reliability Function

12 +

08 +
06 +
04 -

02 +

Copyright 2020, Dennis J. Frailey

Reliability Function for Exponential Distribution

(_R)=zet=)

Value of 0. determines]

shape of curve

t = time since product release

Software Testing Topics 1 3 2

Ut D o Measures Reliability as a Constant

" O is the mean time to failure (MTTF).
- Actually, the mean time to the first failure.

= For large values of O, the probability of

operation without failure remains high for a
longer period of time

= For small values of 0, the probability of

operation without failure deteriorates
quickly

4 Y - .
If the reliability function is not exponential, there
may not be a simple constant to measure reliability
of the total product.

\. J/

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 3

ur D Additional Notes about
Reliability

The desired value of t depends a lot on the
application and the priorities

= Commercial application
- tis large
- the goal is to have few failures over the

life of the application in order to keep
maintenance cost low

= Real time application

- e.g. an aircraft application 4%

— t is relatively short

— but failures in operation are critical — the goal is
zero failures during operation of the aircraft

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 34

ur b Failure Function or

Unreliability Function

Another popular approach is to look at the
probability of a failure:

F(t) = 1 - R(t) = probability of failure in time
interval 0-t

= The latter is called a failure functions.

= It is the cumulative distribution function of
the time interval 0-t.

= For the exponential distribution, the failure
function is:
(F(t)=1-¢e /o)

§ This is also known as the dlistribution function or the
cumulative density function or the unreliability function.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 5

ur D Graph of Exponential Failure Function

Failure Function for Exponential
Distribution

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 6

LI D Probability Density Function or

Probability Distribution Function

This function attempts to put it in another
form that means something to a user:

“(approximately) what is the likelihood that a
failure will occur at time t”

(£(t) = dF(+)/dt)

For the exponential distribution, the formula
is:

(f(t) = alet/e) or (f(t) = Ae?M)

Copyright 2020, Dennis J. Frailey Software Testing Topics

137

ur D Graph of Exponential Density Function

06

05 -

04 +

03 +

02

01 +

Copyright 2020, Dennis J. Frailey

! The valueatOis L = o'l]
This graph is fora=2

(f(.r) - a—le-?/a)

(f(t) = AeM)

t = time since product release

Software Testing Topics 1 3 8

Ut D All three functions
(o = 2)

12 +

Note that given any
one of these we can
compute the others.

—

Y

t = time since product release

—R(t) —F(t) —f(1)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 39

LLL D Conditional Failure Rate (1)
(Hazard Function; Failure Intensity)

This is an attempt to estimate the anticipated number
of times the software will fail in a given time interval,
assuming no prior failures.

(AT = f(H)/R@®) = -dR(1)/dt)

1_4,)\:0.5 .
—_ =1
A=15 |

1.2}

1.0

X 0.8
0.6}

0.4}

0.2} \\

00— 71 > } 3 4 5

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 40

UT D
How to Determine A(t)

(MB)= Vat))

= I.e., the higher the reliability, the lower the
failure rate

- If Ais a constant, then O is a constant and

C A=1/a)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 4 1

UT D

Failure Rate
vs Number of Defects

Most of the hardware-based models assume
the failure rate is directly related to the
number of defects remaining in the product.

But, as we've discussed, software
failures are not always due to defects

% in the software. y

r D
Furthermore, some defects cause no

failures and others cause major failures.
- Y,

Copyright 2020, Dennis J. Frailey Software Testing Topics

142

UT D Problems with the Assumptions
for Classic Hardware Definitions
(when applied to software)

= The classic assumption for hardware devices is that
defects are random with respect to the structure of the
product
— But this is usually not true for software

= Some parts of software are harder to write than others and
thus more likely to have defects

= The classic hardware assumption assumes testing is
uniform with respect to the product

— But with software, some parts are likely to be more
effectively tested than others

Copyright 2020, Dennis J. Frailey Software Testing Topics

143

s e More Problems with Classic

Hardware Assumptions

= All defects are equally likely to occur

— But for software it depends on the paths
taken most often

= All defects produce equally serious
failures

— Clearly not the case for software

= Testing correctly simulates normal,
stressful and unusual conditions

— Generally this is very hard to do for software

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 44

SR Error Probability
Hardware vs. Software

Probability of Failure vs. Time

Software often shows
reliability growth

0.8
0.6
0.4
0.2 —

0 | | | | | | | | | | |

==Hardware ==Software

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 45

LLLD The Bathtub Curve is Often A
Better Description for Hardware

The Normal Bathtub Curve
Expected Failure Rate
Wearout
Early Failures Chance Failures Failures
T Ly f(t) =
Gaussian f(t)= constant Gaussian
= normal normal
L density
o)
e curve
o
&
=
£
Startup Usetul life Dl 1
Operating Time (t) —>

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 46

ur D Software Tends to Get More
Reliable Over Time Because
Parts Don’t Wear Out

[In the absence of major modifications]

Defect Rate after Product Release

Early failures

25
/ Wearout

\

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-s=Hardware =+=Software

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 47

UT D

Software Reliability Issues

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 48

UT D]
How to Measure Time

When Evaluating Software Reliability

= The measure of time is a matter of
considerable dispute

= This may dramatically affect the measure
of reliability

Copyright 2020, Dennis J. Frailey Software Testing Topics

149

Ut D Three Ways to Measure Time

for a Software Product

= Real Time (Calendar Time)
— Number of weeks or months since some event

—_

= Use Time
— Number of hours the software is in actual use

= Processor Time

— Number of hours using the processor

- Natural

Units

Each of these produces different results and

may fit different models

Copyright 2020, Dennis J. Frailey Software Testing Topics

150

UT D

The Nature of The Application

-

_

Different applications can
have very different
notions of reliability

~

/

Copyright 2020, Dennis J. Fra

iley Software Testing Topics

151

UT D

Different Applications -

Different Reliability Implications

(Application: Financial Transactions
Problem: Floating Point Round off Errors

Not a Problem: Excessive Time for Calculations
_

\

J

[Application: Space Craft Local Navigation

Problem: Excessive Time for Calculations

Not a Problem: Floating Point Round off Errors
N\

~

J
4 - .. -)
Application: Space Craft Flight Path
Calculations (ground based)
kSame as Financial Transactions)

Copyright 2020, Dennis J. Frailey Software Testing Topics

152

Ut D Reliability Growth

Software reliability generally gets better over
time
— Assuming you fix bugs and don’t make major
changes

> This is known as the “reliability growth”
phenomenon

Predicting reliability growth is very difficult

— Depends on many factors such as type of
application

[See Fenton, Chapter 11, for discussion of]

several reliability growth models

Copyright 2020, Dennis J. Frailey Software Testing Topics

153

UT D

Study Questions (1 of 2)

Explain why software failures are not
random although they often are for
hardware

Discuss the differences in how hardware
fails and how software fails. Use examples.

Give two examples of ways that software
can fail that are not the result of defects in
the software

A colleague assumes that reliability means
correctness. Explain the difference using an
example.

Copyright 2020, Dennis J. Frailey Software Testing Topics

154

Ut D Study Questions (2 of 2)

= Explain reliability growth, using an
example.

= Explain why software may have reliability
growth whereas hardware usually doesn’t.

= Give two examples of software applications
for which the reliability requirements are
different. Use different examples from any

that were used in the class lectures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 5

UT D
UT Dallas

Software Quality and Software Testing

Part 4 - Defect Containment

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 6

Il Defect Containment (Phase Containment)

This requires that you collect additional information
about each defect you discover during an inspection
or as a result of a test:

- In what phase of development was the defect created?

Defects Phase Containment / Leakage
(High Severity Defects - Priority 1, 2 &3)

— In what phase was it detected?

Life Cycle Phase Discovered

c
)
o
g Legacy| 6.7%
'_; Requirements | 15.0%
5 Design | 15.0%
o
=] Code and Unit Test | 63.3%
"::',‘: Integration Test| 0.0%
]
-d
g Test

After Test

Insights.sei.cmu.ed
Copyright 2020, Dennis J. Frailey Software Testing Topics

157

UT D Note on Defect Containment

= There are several variations on this method

= All use the same basic data (base measures) but they use
the data in different ways

(In this lecture we will iIllustrate \
one of the variations on this
method.

You may find others at
\ www.sei.cmu.edu j

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 58

Ut D Example of Defect Containment

= Suppose you detect a lot of defects during system test

= And suppose you discover that most of them occurred due
to bad design procedures

= Then you know that the best way to fix the problem is to
improve your design procedures

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 59

—1 In-Phase Defects

In-phase defects are those that are corrected in the
same development phase where they were introduced

- Example: a coding error that is caught and corrected
while you are writing the code, before going to system test

» Measuring in-phase defects tells you which parts of
your process generate large numbers of defects

In-phase defects are generally the
least costly to correct.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 60

S Out-of-Phase (Leaking) Defects

Out-of-phase defects are those that are detected (and
corrected) after they leave the phase where they
were introduced

- Example: a design error caught during unit test

> Measuring out-of-phase defects indicates how often
you allow defects to “leak” from the phase where
they originate

— this is a predictor of post-release failures Finding the

— and also a good help in root cause analysis <(Ultimate Cause
of a Defect

Out-of-phase defects are generally
the most costly to correct.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 1

UT D Defect Containment Analysis
Step 1 - Collect the Data

Track Each Defect and Record Phase of Origin

Defect Report /S f thi \
omeo IS

Description information
may not be
Phase where found __ determined
Phase where introduced ____ until you
have
debugged

Priority Type

Estimated Cost to Fix

etc. 7

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 2

the softwa rej

Ut D Defect Containment Analysis
Step 2 - Record and Display the Data

Defect Containment Matrix — Sequential Process

Phase
where
Defect
was
Detected

Copyright 2020, Dennis J. Frailey

Phase where Defect was Inserted

POST
RA | PD | DD |C&T| I&T | REL.
This h
RA| 15 shows the
op| 12 | 55 data at
the end of
pDD| 42 | 8 23 the C&T
ca&Tl 15 3 8 17 phase J
I&T
POST
REL.

Software Testing Topics

163

UT D Defect Containment Analysis
Step 2 - Record and Display the Data

Defect Containment Matrix -— SCRUM Process

Scrum
where
Defect
was
Detected

Copyright 2020, Dennis J. Frailey

Scrum where Defect was Inserted

POST
S1 | S2 | s3 S4| S5 | ReL
This)
S1| 15 shows the
so| 12 | 55 data at
the end of
s3| 42 | 8 23 the 4th
sa| 15| 3 | 8 |17 SCRUM
S5
POST
REL.

Software Testing Topics

164

UT D Defect Containment Analysis Step 3 -
Using the Data

If you see many out-of-phase defects in a specific cell,
you can narrow down the source of defects

Phase where Defect was Inserted

POST
RA | PD DD C&T| 18T | g

RA| 15 A lot of defects are created
Phase op | 12 55 during preliminary design
where — -

Defectwas | pp |(42)] 8 | 23
Detected ca1l 15 | 17
1&T A lot of defects originate during requirements
POST| analysis but are not detected until detailed design
|_REL.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 5

UT D Defect Containment Analysis Step 4 -

Using the Data to Provide
Additional Insight

Over time, you can correlate
= the number of defects in the matrix
= to the number of failures found by the customer

> You can use this to predict and ultimately to
manage the number of failures

{ A method for doing this will be shown briefly in today’s lecture]

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 66

UT D Observations on This Method

1. Definition of a defect must be adhered to in a
consistent way across the project and, preferably,
across all projects in an organization

- Some projects may resist defining defects the same way as
other projects.

2. As shown, there is no distinction by type or
severity of defect

— But this distinction can also be made if the original data are
good enough)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 7

A Key Lesson Learned from Measuring
Defect Containment

If you detect and correct defects early, it greatly
reduces cost and reduces post-release failures (i.e.,
those seen by the customer)

60

50 -+ - mmmmmm Requirements 1
mmmmm Design /

s Code

N
o

Cost Impact
w
o

N
o

| 4
—_—

Requiremen ts Design Code

o

o

—
Test

Defect Detection/Correction Phase

Dau.dodlive.mil

> But this requires very good understanding of
requirements and of customer “care-abouts”

Copyright 2020, Dennis J. Frailey Software Testing Topics

168

UT D Contained and Leaking Defects

Phase of Injection

Copyright 2020, Dennis J. Frailey

RA [PD |DD |CAUT|I&T |Post Rel

RA 15
“ £ In-phase or Contained
5 21pD 12 [55 |« |
2 £/pDD 22 | 8 | 23
a AN

C&UT 15 3 8 17

I&T \{ :

Post Rel Out-of-phase or Leaking]

Software Testing Topics

169

UT D Large Numbers Indicate
Software Development Process Problems

= Large numbers in any column indicate that your
development process is generating many defects in

that process phase

= A large number in a "leaking” cell means you are
also paying a lot of money for rework

This tells you where to focus
process improvement efforts

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 70

UT D

A Typical Defect Containment Chart

Phase Originated

Phase RA PD DD CUT [1&T SYSINT |POST REL| tot
Detected
RA 730 73
PD 158 481 63
DD 19 2 501 52
CUT 15 0 12 63 o
I&T 25 4 35 321 9 39
SYS INT 4 0 7 19 4 2 3
POST REL 48 2 0 36 0 0 67 15

totall 999 489 555 439 13 2 67 25¢

Copyright 2020, Dennis J. Frailey

Least Costly Defects are on the Diagonal

Software Testing Topics

These defects are "Contained” within the step where they were caused

171

UT D

Escaping Defects are Those

Not Detected until After Release

Phase

Originated
Phase RA PD DD CuUT I&T [SYS INT| POST | total
Detected REL
RA 730 730
PD 158 481 639
DD 19 2 501 522
CuUT 15 0] 12 63 90
I&T 25 4 35 321 9 394
SYS INT 4 0 7 19 4 2 36
POST 153
REL

total] 999 489 555 439 13 2 67 2564

Escaping Defects Cost the Most of All

Copyright 2020, Dennis J. Frailey

Software Testing Topics

172

UT D Other Uses of

Defect Containment Data

There are many uses of defect containment

= Calculating total repair cost
— By recording labor cost to repair defects

= Calculating rework cost
— Reduction in rework can be compared with
cost of prevention activities

= Organizational-level analysis
= Prediction of defects and warranty costs

= Prediction of reliability

Copyright 2020, Dennis J. Frailey Software Testing Topics

°°°°°°°°

Warranty Cost

Product Customer

Performance Expectation

Sciencedirect.com

173

UT D

Phase of

Detection

Defect Repair Cost

Labor Cost to Repair Defects

Phase of Injection

nnnnnnnnnnn

Cell i,j indicates the \

@abor cost

to repair a defect

created in phase i and

RA |PD DD |CAUT|I&T |Post Rel
RA $1
PD $12 | $2
DD $22 | $8 | $2
C&UT |[$45| $18 | $8 | $2
T&T
Post Rel

Copyright 2020, Dennis J. Frailey

Software Testing Topics

K detected in phase j j

174

UT D Total Repair Cost) g€

If you multiply the defect containment chart by the
“labor cost to repair” chart, you get total repair cost

e —

| Cell-wise
multiplication

Defect Cost to Total
Counts Repair Repair Cost

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 5

Ut D Total Repair Cost Example Js

nnnnnnnnnnn

Phase of Injection

RA |PD |DD |CAUT|I&T |Post Rel

RA 15
* Cell i,j indicates the \

PD $144 | $110
abor cost
NS Ceralye

484 | $64 | $46
$ $ ’ to repair all defects

Phase of
Detection

CAUT | 675 | $54 | $64 | $34
T&T
Post Rel

created in phase i and

\ detected in phase | /

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 6

Rework Costs Are
The Portion Of the Prior Chart |~ —

UT D

That Are Not On The Diagonal

Phase of Injection

Copyright 2020, Dennis J. Frailey

RA |PD DD |CAUT|IAT |Post Rel
RA $15
“- S
S +|PD $144 | $110
V)
R "3 DD $484 | $64 | $46
a A
CAUT | $675 | 454 | $64 | $34
I&T N
Post Rel Costs of f-diagonal are rework costs

Software Testing Topics

177

—L This Concept Applies
Throughout the Product Lifetime |- —

You can track repair cost and rework cost

during development /fr\
and P
after delivery to the customer

= You can further break defects down by characteristics:
— Phase of Development where Defect Occurred
— Severity
— Importance to Customer
— Cost to Repair
— Time to Repair
— Which Part of the Software was Responsible

Imgkid.com

Copyright 2020, Dennis 3. Frailey Software Testing Topics 1 7 8

Sl [This Can Help You Justify
Process Improvements s T

Rework costs are the equivalent of “software scrap”

= If you can reduce scrap by investing in defect
prevention activities, you can save a lot of money
(see earlier slides)

= If you make an improvement in your development
process, you can use the defect containment chart to
show the savings in reduced repair cost

= And you can use the chart to determine which parts
of the process are most important to improve

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 79

UT D Analyzing Defect Data at the

= By collecting data from many projects, we can show

Organizational Level

historical costs for rework

= And we can also show patterns of defect containment

Organization
Data

Project

A Data

Copyright 2020, Dennis J. Frailey

Project
C Data

Software Testing Topics

Project

N Data

180

Uur D Organizational Analysis of Defect
Containment Data
Analysis of defect containment data for many projects

over a period of time
may show such organizational information as:

— Most frequent types of defects

— Most costly defects

— Time required to fix defects

— Process steps generating the most defects

— Which design standards help or hurt defects

f Typically we collect the data needed for h

statistical process control:
\averages, ranges, distributions, maximum, minimum, etc.)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 8 1

UT D

Example: Determining an
Organizational Process Metric

Defect

Data from
SA/SD
Projects

|

SA/SD Defect Pattern

Copyright 2020, Dennis J. Frailey

Defect LT T T 1
Data —
from OO ﬂ

|

Projects

OO Defect Pattern

Software Testing Topics 1 8 2

UT D
UT Dallas

Software Quality and Software Testing

Part 5 - Measuring Software Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 8 3

LI D Contents

Complexity: what and how to measure

Structured Programs and Flowgraph Analysis

Measures of Complexity

Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 84

Ut D Contents

» Complexity: what and how to measure

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 8 5

Ut D Complexity

We tend to think that complex software is
more difficult to develop, test and maintain
and has greater quality problems.

But what do we mean by complexity?

Dictionary definitions of complex:
1. Composed of many interconnected parts

2. Characterized by a very complicated
arrangement of parts

3. So complicated or intricate as to be hard to
understand

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 86

Ut D Complex vs Complicated

Complicated: being difficult to understand but with time
and effort, ultimately knowable

Complex: having many interactions between a large
number of component entities.

— As the number of entities increases, the number of interactions
between them will increase exponentially

— It can get to a point where it would be impossible to know and
understand all of them.

2

s

Hotel-r.net

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 8 7

Ut D Changing Complex Software

= Higher levels of complexity in software increase the risk of
unintentionally interfering with interactions and so increase
the chance of introducing defects when making changes.

Beonch OFfice Corpordte “206‘5“0’*3"5 -l?es;onal Oftice

TS \
r T
T1r/ET4 t -
- ‘i : : | @u
e © < 5 =
\ 2 o gihet
< ! M b — = — wy
N | { . Vis
o I LR anndy)
e

\
Mobite Users

Telecoramuters
¥ Peld Sales

& Remote Users

Labs.Sogeti.com

= In more extreme cases, complexity can make modifying the
software virtually impossible. Changes introduce more
problems than they fix. This is called inherent instability.

Copyright 2020, Dennis J. Frailey Software Testing Topics

188

UT D Can We Measure Complexity?

Measures of complexity would need to address:
— the parts of the software,
— the interconnections between the parts,
— and the interactions between the parts.

Information Need
— Something that will help us estimate
— difficulty of programming,
— difficulty of testing and maintaining,
— expected level of quality

— Something that will help us evaluate and
improve our software with regard to the above
characteristics

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 89

UT D How Can We Measure Complexity?

The base measures
would quantify the
attributes of:

— The parts or

components of the
software

- How many parts or
components there are

— The arrangement of
the parts

— The interactions of
the parts

Copyright 2020, Dennis J. Frailey

Software Testing Topics

190

Ut D Compound Measures

Combining the base measures into calculations that help
us address our information needs, answering questions
such as:

— What aspects of software structure can help forecast
development effort and quality?

- Is my software structure good?
— How should I test my software?
— How can I improve my software structure?

— How much has it improved?

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 9 1

Ut D What Can We Measure?

We might learn something about the structure and
complexity of software by measuring:

- Requirements
= Models, use cases, test cases

— Architecture and Design
= Models, design patterns, structure, control flow, data flow

— The code itself
= Statements, variables, nesting, control flow, data flow

— The way the code is assembled to produce the final product
» Load files, use of libraries

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 9 2

UT D

One Problem Is That There are
Many Systems for Describing
Software Structure

=]
@
== s
UML Model Diagram Windows 7 Ul Booch OOD COM and OLE Data Flow Model
Diagram
Bl & o B Luo
e N i / p . . " = 5
~ v/ o= L G2
Enterprise Jacobson Use Case Jackson Program Flowchart ~ Program Structure
Application
P e
= @ = a a
] Stals e .'._<< .
= - l=1 -
Nassi-Shneiderman ROOM Shlaer-Mellor OOA SSADM

Yourdon and Coad

Copyright 2020, Dennis J. Frailey

Software Testing Topics

193

UT D

Generally Speaking We Measure
Complexity of Systems and of

Components that Make up Systems

We usually start with the architecture of the system

ox/v

EXECUTIVE
MODEL

e

MODULE A

7N

MODULE B8

This s
the notation
for a decision

ENNZA

GET CHAR.

char

MODULE C MODULE D
char

PUT CHAR.

ThlS Is the
notation
fora Ioop

G

ET RECORD

EXTRACT CHAR.

INSERT CHAR.
INTO RECORD

WRITE RECORD

Copyright 2020, Dennis J. Frailey

Software Testing Topics

Thisis the)
architecture of a
system defined
using structured

analysis. There are
complexity
measures for the
system and for the
individual

\ components. /

194

With Object Oriented Systems, the Nature of
the Components Varies with the Methodology

This means we must sometimes devise
methodology-specific measures

Docuraent %} St Media \

b | This is the
[| architecture of a
Structure Publication | Bt o system defined using
is-a presertation i object oriented

| | | . methodology. There
Table || Frame || List | [RefEntry| [Anticle Teati) | hraphics are complexity
sa A measures for the
| system and for the

“Z4 Book || Serial | |Reference individual
K components.

Figure 1. IMultiraedia Docuraent Ivlodel - Object diagrara

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 9 5

urt D Order of Presentation
We will focus on complexity of structured, procedural
software
— Because this is where most of the research has been focused

— Because the results apply to software in many different
languages

— Because most of the results also apply to object oriented
software

From time to time we will mention how the concepts are
applied to object oriented software

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 9 6

ur D System Level Complexity

Fundamentally, the complexity of a system depends
on the number of components and the number of
links between the components of the system

It can be further complicated by the degree to which
the components share common elements (coupling)

Copyright 2020, Dennis J. Frailey Software Testing Topics

197

UT D Contents

> Structured Programs and Flowgraph Analysis

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 9 8

ur D Control Flow Captures Major
Complexity-related Attributes

Our intuitive notions of complexity would say that when
there are more parts and more complex ways they
interact, we have more complex software.

Many measures of complexity make use of control flow analysis.

Copyright 2020, Dennis J. Frailey Software Testing Topics

199

ut D Control Flow is Often Modeled with
Directed Graphs

[om]
o
¢ i
S
Node F F
[Ga] [Ee]
ArC & l l o 1 default
o =
Edge F
F 3
This could be flow within a 36 retwrn]
system or within a module .

Copyright 2020, Dennis J. Frailey Software Testing Topics 200

In Many Notations, the Shape of the Node
Conveys the Nature of What it Represents

For example, flowcharts:

Predefined
Process

Process Q Display

Terminator

Data (fl) O Connector
Manual Input
Off-page Connector
N /I: Annotation
Decision

ZAINAD

Copyright 2020, Dennis J. Frailey Software Testing Topics 20 1

UT D Notation To Be Used Here
(in these slides)

Arc or Edge —_— A path between nodes

Procedure Node

— A block of code. @—> Squarish shape, :
. Exactly one arc leaving
Any decisions are

internal to the
block. One exit.

Predicate Node Round shape, Two or
— One that makes a more arcs leaving

decision.

- Start Node @ or " Colors of procedure and A
— predicate nodes are not part of
pr— the notation.

= Stop Node Colors are used only to clarify
— _ points being made on a slide. Y

Copyright 2020, Dennis J. Frailey Software Testing Topics 20 2

UT D A FlowGraph

A flowgraph is a directed graph with
— One start node, and
- One end node,

> that has the following property:

— Every other node lies on a path between the start node
and the end node

Notes:
— This notation works for any procedural programming language
— But not all languages can represent all possible flowgraphs

— Certain common language constructs have readily recognized
flowgraph forms

See later slides or Fenton,
page 379 for some examples.

Copyright 2020, Dennis J. Frailey Software Testing Topics 203

Example: Code, Flowchart, and Flowgraph

Code Flow-Chart Flow-Graph

statementl statementl
+
If expressionl
statement? expressionl
else l— §l
statement3 statement2 statement3
statement4 ' T '
. —_— statementd
atatements '

—— statements
+

while expression2

statementé

——— expression2

|

statementé

Copyright 2020, Dennis J. Frailey Software Testing Topics 204

Ut D What is a Structured Program?

A structured program is one constructed out of
three fundamental control structures:

- Sequence (ordered statements and/or subroutines)
= Examples: A = B+C; D = FUNC(E,F)

— Selection (one or more statements is executed,
depending on the state of the system)

= Example: If C1 Then <true option> Else <false option>

— Iteration [loop] (a statement or block is executed
until the program has reached a certain state)

= Examples: While; Repeat; For; Do... Until

Copyright 2020, Dennis J. Frailey Software Testing Topics

Sequence

Sl‘l __— First do S1
Slz/Then doS2
Selection
Q?
% 3
X é(r@
T S2
Loop
Q?

205

Ut D Structured Program Notation

Sequence

statement
statement

Selection

statement statement

|

statement

statement

statement

condition A
Y n

condition

statement] | statement statement

-

Blue: NS Diagram notation; Green: Flowchart notation

Tessassnens e CELTTERPPTE N
v

statement

Iteration (Loop)

statement

Sequence

v First do S1
S1—"

v
52

|

Copyright 2020, Dennis J. Frailey

__~Thendo52

Selection

Software Testing Topics

Loop

206

These Three are Sufficient to Represent
Any Program

4 The structured program theorem, also A
known as the Bohm-Jacopini theorem, says
that the class of flowgraphs representing
the three control structures above can
_ compute any computable function)

> Note: This does not necessarily mean it is the only
way or the best way.

» The theorem simply states that it is possible to
represent any function with only the three control
structures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 20 7

Why Are Structured Programs Important?

Studies have shown that limiting the software to a
small number of well defined control structures has
these benefits:

— Easier to understand

— Less error prone

— Easier to analyze and test

— Easier to measure

(

This started out as a theoretical concept, developed by Edsger Dijkstra and others.

It became more widely known when Dijkstra wrote his famous “Go 7o Considered
Harmful’! letter to the editor of Communications of the ACM (in 1968).

\

1 See References

Copyright 2020, Dennis J. Frailey Software Testing Topics

208

Ut D There May Be More Than One Flowgraph
Representing A Particular Kind of Control Structure

Example: Two flowgraphs for selection

4)

Each of these is also
a “prime"” flowgraph,
meaning it cannot be
reduced to a simpler
form. We'll discuss
this further in later

\ slides. /

If A then X If Athen X else Y
(Do) (Dy)

Copyright 2020, Dennis J. Frailey Software Testing Topics 209

Ut D Two Prime Flowgraphs for Iteration

Copyright 2020, Dennis J. Frailey

While A Do
X

(D2)

Repeat X
Until B

(D3)

Software Testing Topics

210

Ut D Prime Flowgraphs and D Notation

= A prime flowgraph is one that cannot be reduced (to a
simpler flowgraph).
— Dy, D1, D, and D3 are all prime.
— See discussion of “reduction” in later slides.

= The D notation is a widely recognized way of denoting
certain standard, prime flowgraphs.

If A then B
(Do)

This is a standard type of flowgraph, known as
a D, structured flowgraph.

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 1

Ut D The Flowgraphs Dy,-D; (and sequencing)
Can Be Used To Represent Any Program

As a result, some define a program to be "structured”
only if it is represented by a combination of these
flowgraphs.

However, there are several additional prime
flowgraphs that represent commmonly used language
constructs and that can greatly simplify some
programs.

So different organizations and researchers have
defined additional prime flowgraphs that may be
permitted in “structured” programs.

In other words, every organization defines sfructuredin its own way.

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 2

UT D Structured Program Flowgraphs:
What Is Common and What Is Not

= What all structured programs have in common
— Definitions of edges, nodes, etc.

— Built out of the three fundamental constructs: sequence,
selection, and iteration

— It must be possible to reduce a program to a combination of a
selected set, S, of prime flowgraphs

= What is Different
— Which prime flowgraphs are included in the set S.

See Fenton, section 9.2 for a discussion of flowgraphs and
structure and, in particular, section 9.2.1.2 for a generalized
notion of structuredness.

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 3

UT D An Example of Why
Additional Prime Flowgraphs are Useful

ELSE Y

Tru

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 4

[IF A or B THEN x

If only DO and D1 can be used to)
represent this code, then we must use
a D1 within another D1 and must show
False X twice.
This is the equivalent of rewriting the
source code as shown below. /

(IF A THEN X) i |
ELSE duplicated. If
Xis a lot of
e 2 ULl 2 code this is
_ ELSE Y) inconvenient./

Ut D D Was Introduced To Allow Common
Boolean Selection Decisions

If Athen B If Athen B else C If A or B then X If A and B then X
(Do) (D1) else Y else Y
(Ds) (Ds)

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 5

BB D, Was Introduced to Allow Middle-Exit Loops

While A Repeat X
Do X Until B Do X
(D,) (D) Exit when A
DoY
Repeat
(D)

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 6

C Flowgraphs are Prime Flowgraphs
for CASE Statements

~

Note that there are
an arbitrary number
of these, depending
on n — the number of
possible selections. Y,

/ Note also that these are classified\

Case A of as “C” structured flowgraphs, not
A Xy “D” structured flowgraphs, because
Ay Xy | A S
technically, the CASE statement is
A,: X, not one of the three fundamental
(Ci.) _ control structures. -

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 7

Ut D L Structured Flowgraphs Represent
Multi-Exit Loops

True

Do X
Exit when A
DoY
Exit when B
Repeat

(L)

Copyright 2020, Dennis J. Frailey

/A two-exit loop is\
shown (L,). This is
commonly used.
However higher
numbers of exits
could be

represented as wellj

~ Thisalsohasitsown)
classification (L) rather than
being considereda D
flowgraph because it is not
one of the three fundamental

_ control structures. ~/

Software Testing Topics

218

B Why Use Flowgraphs to Measure Complexity?

= Directed Graphs clarify the flow of control between
software elements

= Many measures of software complexity can be
determined from directed graphs

= It is fairly easy to represent any program with a
directed graph

— Note that there might be several ways to graph a program, but
they should all have the same measure of complexity if they
are done correctly

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 1 9

UT D Combining Flowgraphs

Flowgraphs with a single entry and single exit can be
combined in the following ways:

= Sequencing: Merging the end node of one flowgraph
with the start node of the other

= Nesting: Replacing an arc in one flowgraph with the
other flowgraph

Flowgraphs can also be reduced or condensed or
decomposed by reversing the above

= For example, collapsing a nested flowgraph into a
single node and arc

— This is, conceptually, the equivalent of replacing the nested
flowgraph with a procedure call

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 20

Ut D Sequencing Example

C : L o End
oL e ol
A D—G
Sequence S1 ‘ Sequence S2
* B—> C E—>F|
o e
A D—G

Sequence S1 S2

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 2 1

ur D Nesting Example

. B—>C E—>F

e“m 2 e
G—H.

D calls Procedure P

procedureP

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 2 2

Ut D Reduction Example 1

4 Any single-)
entry, single-
exit sub-
graph can be
replaced by a
procedure

_ call Y,

B—C EP{E
Wl e o e

[pro?::::fe -]7 Procedure P

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 23

Ut D Reduction Example 2

o
o B

Any sequence
containing no
decisions or
iterations can be

reduced to a
_ J

single node

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 24

Ut D McCabe Cyclomatic Complexity

The Cyclomatic Complexity (v) of a Module or a System is:

— The number of linearly independent! paths (basis paths)
through the module or system

— If F is a flowgraph?, then v(F) = e—-n + 2
= Where e is the number of edges (arcs)
= And n is the number of nodes

— If a system consists of multiple flowgraphs that are not
connected together, the formula becomes:
V(F) =e—-n+ 2c
= Where c is the number of separate flowgraphs3

1 To be discussed a little later 2 With one entry and one exit
3 In graph theory these are called connected components

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 2 5

Ut D Examples of Cyclomatic Complexity

= Example 1: D B n

>V(F)= e-n+2 = 3-4+2
» There is only 1 path through the code

1

= Example 2:

>»V(F) = e-n+ 2

6-5+2 3
True
» There are 3 paths through
the code:
= ABDE
= ABCE

= ACE

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 2 6

Why Is Cyclomatic Complexity Useful?

= Number of paths indicates maximum number of
separate tests needed to test all paths
— This should relate to the difficulty of testing the program

= It also indicates the number of decision points in

the program (plus 1)
— This should relate to the difficulty of understanding and
testing the program

Cyclomatic complexity is not a perfect measure of
these things (see Fenton, chapter 9) but it is a fairly
reliable guide.

Software Testing Topics 2 2 7

Copyright 2020, Dennis J. Frailey

The Higher the Cyclomatic Complexity, the

Harder the Code Is to Maintain

Cyclomatic Complexity

Simple
procedure
11-20 More complex
' 21-50 :C omplex
1 50-100 :“Untestable”
' >100 'Holy Crap!

while maintaining code.

Minimal
10% 1 Moderate
1 20% - 40% 'High
- 40% ' Very High
1 60% 'Extremely High

*Bad Fix Probability represents the odds of introducing an error

CC R AR Bad Fix Maintenance
Value P Probablllty o Rlsk

Copyright 2020, Dennis J. Frailey

Software Testing Topics

228

Ut D What Do We Mean by
Linearly Independent Paths?

The number of linearly independent paths is the
minimum number of end-to-end paths required to touch
every path segment at least once.

- Sometimes the actual number of paths needed to cover the system is
less than this because it may be possible to combine several path
segments in one traversal.

There may be more than one set of linearly independent

paths for a given flowgraph
— This becomes more likely as you get more complex flowgraphs

Determining a set of linearly independent paths is
something you might study in a course on testing orin a
course on graph theory

— It gets harder as the cyclomatic complexity goes up

Copyright 2020, Dennis J. Frailey Software Testing Topics

229

UT D A Graph with Five
Connected Components

This graph has five
separate regions, 'D D\%
which are connected (-_[)\ (T)\
within themselves, ()~ C)—’é
but not to each other.

Each region is called (_J__)/ 2 ’\
a connected Q /C)
component. -

The graph above is not a flowgraph by our strict definition,
because it has more than one start and stop node and not all nodes
are connected to any given start or stop node. But it illustrates the
concept of connected components.

Copyright 2020, Dennis J. Frailey Software Testing Topics 230

Ut D Why Would We Care About Graphs
with Many Connected Components?

= We could measure the cyclomatic complexity of a
system consisting of several separate modules

= In object oriented systems we could measure the
cyclomatic complexity of a class containing multiple

methods
Surname .
Prename Holder
Adress ~ Attributes, Number
Profession Properties - |CreditLine
Birthday | | Balance
~ Holder qf the right
Change of Residence a of disposal
Change of Profession] >
Methods Deposit
a2 Withdrawal
1 | Transfer
Standing Order

Copyright 2020, Dennis J. Frailey Software Testing Topics 23 1

Ut D McCabe Essential Complexity

The Essential Complexity (ev) of a Module or a System is:
— The cyclomatic complexity of the fully reduced flowgraph
- Example:

= ev(F) = 1 because this can be reduced to one node

> If the flowgraph is constructed completely of prime
flowgraphs (i.e., it is structured) then the essential
complexity will be 1.

Copyright 2020, Dennis J. Frailey Software Testing Topics 23 2

Some Issues with Essential Complexity
(slide 1 of 2)

Essential complexity is intended to tell us how well
structured a program is.

However

= As originally defined, the only valid primes were the
four D structured primes: Dy, D4, D,, D5

— So if you allow additional primes, do you revise the definition
of essential complexity to include the new primes?

— Do you allow D4 and Ds but nothing else?

— What about the C structured primes and the L structured
primes?

Copyright 2020, Dennis J. Frailey Software Testing Topics 23 3

Some Issues with Essential Complexity
(slide 2 of 2)

If your program is not “structured” it isn’t clear whether
the essential complexity tells us much beyond that

— Does a larger essential complexity actually mean anything?
— If two programs have the same essential complexity, are they
equally complex?
= See fig. 9.13 in Fenton for an example

= He shows two flowgraphs that have the same essential complexity,
but intuitively one of them is a lot more complex and harder to
understand than the other.

Copyright 2020, Dennis J. Frailey Software Testing Topics 234

UT D Contents

» Closing Remarks

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 3 5

There is No Single Measure of Complexity

= As we have seen, there are different ways to measure
complexity

= Research shows that sometimes the attributes of
complexity may conflict

— For example
= low coupling doesn’t always mean high cohesion

= low cyclomatic complexity doesn’t always mean easy to
understand

= structured software may be awkward to produce in languages
without certain constructs

Use complexity measures as guidelines, not as
“magic numbers” that result in rigid requirements
for code.

Copyright 2020, Dennis J. Frailey Software Testing Topics

236

UT D

END OF
Part 5

Copyright 2020, Dennis J. Frailey Software Testing Topics 23 7

Ut D Any Questions?

Copyright 2020, Dennis J. Frailey Software Testing Topics 2 3 8

UT D

End of
Lecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 239

UT D

Copyright 2020, Dennis

References
Part 1

Bourque, P. and R.E. Fairley, eds., Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society Press, 2014. ISBN
978-0769551661. Available in PDF format (free) at www.swebok.orqg.

Crosby, Philip, Quality is Free. New York: McGraw-Hill, 1979. ISBN 0-07-
014512-1.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228.

Juran, Joseph M., Juran on Quality by Design: The New Steps for Planning
Quality into Goods and Services. Free Press, 1992. ISBN-13: 978-
0029166833.

Project Management Institute, SWX - The Software Extension to the
PMBOK Guide Fifth Edition, Project Management Institute, 2013. ISBN 978-
1628250138.

Weinberg, Gerald M., Quality Software Management, Volume 1, Systems
Thinking,F Dorset House, New York, 1992, ISBN: 0-932633-22-6.

ailey Software Testing Topics

240

CHl 1 References
Part 2

Devore, Jay, N. Farnum, and J. Doi, Applied Statistics for
Engineers and Scientists, 3" Edition, Thompson, 2013. ISBN

978-1133111368.

Fenton, Norman and James Bieman, Software Metrics: A
Rigorous and Practical Approach, Third Edition, Chapman and
Hall, 2014. ISBN 978-1439838228.

Stevens, S. S., "On the Theory of Scales of Measurement”.
Science (7 June 1946). 103 (2684): 677-680.

Copyright 2020, Dennis J. Frailey Software Testing Topics 24 1

UT D
References — Part 3

= Lyu, Michael R., Handbook of Software
Reliability Engineering, IEEE, 1996, Catalog #
RS00030. ISBN 0-07-039400-8.

= Musa, John, Software Reliability Engineering:
More Reliable Software, Faster Development and
Testing, McGraw Hill. ISBN: 0-07-913271-5.

= Xie, M. Software Reliability Modeling, World
Scientific, London, 1991. ISBN 981-02-0640-2.

Copyright 2020, Dennis J. Frailey Software Testing Topics 24 2

UT D

References
Part 4 (1 0r2)

Chatfield, C., Statistics for Technology, A Course in Applied Statistics,
Third Edition, Chapman and Hall, London (1983), ISBN 978-04122534009.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 6.

Hedstrom, John and Dan Watson, “Developing Software Defect
Prediction,” Proceedings, Sixth International Conference on Applications of
Software Measurement, 1995,

Jones, Capers, Applied Software Measurement, McGraw Hill, 1991. ISBN:
0-07-032813-7.

Knuth, Donald, Seminumerical Algorithms: The Art of Computer
Programming, Vol II, Addison-Wesley, 1969. ASIN: BOO157WFAU

Copyright 2020, Dennis J. Frailey Software Testing Topics

243

UT D References
Part 4 (2 of2)

Ott, R.L. and M. T. Longnecker, An Introduction to Statistical Methods
and Data Analysis, 6" Edition, Duxbury Press (2008), ISBN 978-
0495017585.

Snyder, Terry and Ken Shumate, Defect Prevention in Practice (Draft
white paper), Hughes Aircraft Company, October 22, 1993.

Ross, Sheldon M.. Introduction to Probability Models, Academic Press,
1993. Musa, John, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, McGraw Hill. ISBN: 0-07-913271-5.

Copyright 2020, Dennis J. Frailey Software Testing Topics 244

UT D

References
Part 4 (10r2)

Abran, A., et. al., "Functional Complexity Measurement”, Proceedings,
IWSM 2001 - International Workshop on Software Measurement.

Chidamber, S. and Chris Kemerer, A Metrics suite for Object Oriented
Design, MIT Sloan School of Management E53-315 (1993).

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and

Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, "Deriving Structurally Based Software
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

Henry, S. and D. Kafura, "Software Structure Metrics Based on
Information Flow”, IEEE Transactions on Software Engineering, Volume SE-
7, No. 5 (Sept, 1981), pp 510-518.

Copyright 2020, Dennis J. Frailey Software Testing Topics

245

UT D

References
Part 4 (20f2)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard Dictionary
of Measures to Produce Reliable Software, A25. Data of Information Flow
Complexity. P112.

Stevens, W., G. Myers and L. Constantine, “"Structured Design”, IBM
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Kitchenham, B. A., "Measuring to Manage”, in Mitchell, Richard J. (editor),

Managing Complexity in Software Engineering, London, Peter Peregrinus,
Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, "Functional Complexity Measurement:
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth
International Conference on Software Engineering Advances.

Copyright 2020, Dennis J. Frailey Software Testing Topics

246

