
Copyright 2020, Dennis J. Frailey Software Testing Topics 1

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 – Measuring Software Quality
Part 3 – Software Reliability
Part 4 - Defect Containment

Part 5 – Measuring Software Complexity



Copyright 2020, Dennis J. Frailey Software Testing Topics 2

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 – Measuring Software Quality
Part 3 – Software Reliability
Part 4 - Defect Containment

Part 5 – Measuring Software Complexity



Copyright 2020, Dennis J. Frailey Software Testing Topics 3

Dennis J. Frailey
Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
(various titles), Raytheon Co. 1997-2010

Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017

Adjunct Professor, UT Arlington, 2014-present
-----

Areas of specialty: software development 
process, software project management, 

software quality engineering, software metrics, 
compiler design, operating system design, real-

time system design, computer architecture



Copyright 2020, Dennis J. Frailey Software Testing Topics 4

A Recommended Book on Measurement

Some of the material covered 
today is taken from this book.

Although not a book on testing, 
it is a very good book on 

measurement and addresses 
several aspects of testing.

Software Metrics – A Rigorous and Practical Approach
By Norman Fenton and James Bieman



Copyright 2020, Dennis J. Frailey Software Testing Topics 5

More Recommended References

SWX – The Software Extension to the Project 
Management Body of Knowledge, available from PMI 
(www.pmi.com) and the IEEE Computer Society 
(www.computer.org).

– This is a general reference that may be important if you want 
to apply some of today’s techniques in project management.

SWEBOK – The Guide to the Software Engineering Body 
of Knowledge, available from the IEEE Computer Society 
and also at www.swebok.org

– This is another general reference that gives an overall picture 
of software engineering knowledge and summarizes topics that 
any software engineer should know about. 

http://www.pmi.com/
http://www.computer.org/
http://www.swebok.org/


Copyright 2020, Dennis J. Frailey Software Testing Topics 6

Part 1

The Big Picture – How Quality 
Relates to Testing and Other 

Aspects of Software Engineering



Copyright 2020, Dennis J. Frailey Software Testing Topics 7

Test and Evaluation

Evaluation: Appraising a product through one of the 
following:
– Examination, analysis, demonstration
– Testing
– or other means

Testing: Exercising a system to improve confidence 
that it satisfies requirements or to identify 
variations between desired and actual behavior.

“Evaluation” is the broader term.



Copyright 2020, Dennis J. Frailey Software Testing Topics 8

But What Are We Appraising?
What is “Desired Behavior”?

§ Satisfies requirements
§ Works correctly
§ Does what I want it to do
§ Does no harm
§ Reliable – I can depend on it
§ Easy to use
§ Portable
§ Easy to update and maintain
§ Easy to test
§ Runs efficiently / fast
§ Consistent
§ …

Can we test for 
these 

characteristics?

Can we 
measure 

them?



Copyright 2020, Dennis J. Frailey Software Testing Topics 9

Measurement is Often Involved in 
How We Test Software

Requirement

§ Software must handle up 
to 10 transactions per 
minute

How we might Test it

Ø Measure how many transactions 
it processes per minute

§ Software must produce 
the correct output

§ Software must be easy to 
use

§ Software must be easy to 
test

Ø Run the software on 1000 
different test cases and count 
how many produce correct output

Ø Have 25 people use the software 
and rate how easy it is to use

Ø Run standard test procedures 
and measure how long it takes



Copyright 2020, Dennis J. Frailey Software Testing Topics 10

But What Are We Testing?
What is “Desired Behavior”?

§ Satisfies requirements
§ Works correctly
§ Does what I want it to do
§ Does no harm
§ Reliable – I can depend on it
§ Easy to use
§ Portable
§ Easy to update and maintain
§ Easy to test
§ Runs efficiently / fast
§ Consistent
§ …

These are all 
characteristics of 
Software Quality

I.e., testing is one way to 
assess software quality.

And measurement is 
often part of testing.



Copyright 2020, Dennis J. Frailey Software Testing Topics 11

Downloadable at: 
www.swebok.org



Copyright 2020, Dennis J. Frailey Software Testing Topics 12

SWEBOK Facts

§ 3 Editions have been produced since 1998

§ 2 Editors: Pierre Bourque and Richard Fairley

§ 8 Contributing and Co-Editors 

§ 15 Knowledge Areas, each with its own Editors
– Each aligned with related ISO and IEEE standards 

§ 9-person Change Control Board

§ Over 300 reviewers (chosen due to their expertise in 
various aspects of software engineering)
– Over 1500 comments received and adjudicated on various drafts (3rd

edition)

§ 36 Items in Consolidated Reference List



Copyright 2020, Dennis J. Frailey Software Testing Topics 13

The 15 SWEBOK Knowledge Areas

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance
Software Configuration 

Management
Software Engineering 

Management
Software Engineering 

Process  

Software Engineering Models 
and Methods

Software Quality
Software Engineering 
Professional Practice

Software Engineering 
Economics

Computing Foundations
Mathematical Foundations
Engineering Foundations



Copyright 2020, Dennis J. Frailey Software Testing Topics 14

Software Requirements



Copyright 2020, Dennis J. Frailey Software Testing Topics 15

Software Design



Copyright 2020, Dennis J. Frailey Software Testing Topics 16

Software Construction



Copyright 2020, Dennis J. Frailey Software Testing Topics 17

Software Testing



Copyright 2020, Dennis J. Frailey Software Testing Topics 18

Software Configuration Management



Copyright 2020, Dennis J. Frailey Software Testing Topics 19

Software Engineering Management



Copyright 2020, Dennis J. Frailey Software Testing Topics 20

Software Quality



Copyright 2020, Dennis J. Frailey Software Testing Topics 21

What Do We Mean by 
Quality?



Copyright 2020, Dennis J. Frailey Software Testing Topics 22

Concepts of Quality for Products

“Quality is conformance to requirements”
Crosby

“Quality is fitness for intended use”
Juran

“Quality is value to someone”
Weinberg



Copyright 2020, Dennis J. Frailey Software Testing Topics 23

“Quality is
Conformance to Requirements”

§ If testable requirements can be established, then it is 
possible to decide whether the product satisfies the 
requirements – by testing it.

§ If measurable quality characteristics can be established, 
then it is possible to decide on the extent to which the 
product satisfies the requirements – by measuring it.

§ Thus you can avoid disputes and have workable 
contractual relationships

However …



Copyright 2020, Dennis J. Frailey Software Testing Topics 24

Issues with 
“Conformance to Requirements” (1 of 4)

Who establishes the requirements?

– Sponsor - The one who pays for the product

– End User - The one who will use the product

– Sales or Marketing - The one who will sell the product

– Engineering - The ones who will design and build it

Planetgeek.ch

What the 
end user 

wants

What the 
engineer 

builds



Copyright 2020, Dennis J. Frailey Software Testing Topics 25

Issues with
“Conformance to Requirements” (2 of 4)

Are the requirements right?
– consistent

– complete

– visible

– correct

Ø Who determines whether the 
requirements are right?

Ø What if you discover a problem later on?

Slideshare.net

Quora.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 26

Issues with
“Conformance to Requirements” (3 of 4)

What about implicit vs. explicit requirements?

– Explicit requirement: pizza should be hot and flavorful

– Implicit requirements: 

§ comes sliced in reasonably sized pieces

§ not harmful

§ fits in the pizza box

§ …



Copyright 2020, Dennis J. Frailey Software Testing Topics 27

Issues with
“Conformance to Requirements” (4 of 4)

What about when requirements change during the 
development process?

– Who makes the changes?

– Who controls and authorizes the changes?

– Who pays for the consequences of changes?



Copyright 2020, Dennis J. Frailey Software Testing Topics 28

“Quality is 
Fitness for Intended Use”

§ This definition is based on a fundamental 
concept of law - that a product should be 
suitable for the use that it is intended for.

§ This definition accommodates the fact that 
we may not be able to fully define the 
requirements.

However …



Copyright 2020, Dennis J. Frailey Software Testing Topics 29

Issues with
“Fitness for Intended Use” (1 of 4)

– Consider a TV set 

§ which fitness characteristics are not 
understood by

–Typical User
–Engineer
–Sales Personnel

Konga.com

Who defines fitness?



Copyright 2020, Dennis J. Frailey Software Testing Topics 30

Issues with
“Fitness for Intended Use” (2 of 4)

– Consider a software program

§ which fitness characteristics are not 
understood by 

–The typical software developer?
–The inexperienced end user?
–The experienced end user?

Gemtree.com

Who defines fitness?



Copyright 2020, Dennis J. Frailey Software Testing Topics 31

Issues with
“Fitness for Intended Use” (3 of 4)

Different users have different definitions of fitness

– Ease of use for novices 

– Control of fine details for experts

– Ease of maintenance for support staff

– Able to survive power failures

– Compatibility with previous system

Ø Uses change as users grow in experience
– Too many “ease of use” and “automatic” features may 

frustrate an expert

Theodysseyonline.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 32

Issues with
“Fitness for Intended Use” (4 of 4)

The “pleasant surprise” concept
User gets more than he or she expected

There is often tension between the engineer 
knowing better than the customer and the 
customer knowing better than the engineer

They really knew what they 
were doing when they 
designed this software



Copyright 2020, Dennis J. Frailey Software Testing Topics 33

“Quality is
Value to Someone”

§ This definition incorporates the idea that quality 
is relative

§ And it places increased emphasis on 
understanding what quality means to the 
intended user of the software

However …



Copyright 2020, Dennis J. Frailey Software Testing Topics 34

Issues with “Value to Someone” (1 of 4)

Whose opinion counts?

ØYou may need to weigh different opinions

How is the 
financial software?

I want hot 
games

What 
features do 
you want?

Does it have 
Facebook and 

Twitter?

Can it survive 
spilled drinks?



Copyright 2020, Dennis J. Frailey Software Testing Topics 35

Issues with “Value to Someone” (2 of 4)

Logic vs Emotion
– “Glitz” v. “Substance”

Which Car 
is Best for 

Our Family?



Copyright 2020, Dennis J. Frailey Software Testing Topics 36

Issues with “Value to Someone” (3 of 4)

Value depends on What Features are Most Important

– Space Shuttle
§ 0 defects
§ Reliability

– Video Game
§ Good user interface
§ High performance

– School Laptop
§ Rugged
§ Fast
§ Good Battery Life
§ Good Software



Copyright 2020, Dennis J. Frailey Software Testing Topics 37

Issues with “Value to Someone” (4 of 4)

Explicit
§ I need an office
§ It must have a computer
§ And lots of space

Implicit
§ I need a desk
§ And a chair
§ And convenient electrical outlets

Some Needs are Implicit (unstated)



Copyright 2020, Dennis J. Frailey Software Testing Topics 38

Definitions of Software Quality

IEEE: The degree to which the software possesses a 
desired combination of attributes

Crosby: The degree to which a customer perceives
that software meets composite expectations

Note that both definitions imply 
multiple expectations



Copyright 2020, Dennis J. Frailey Software Testing Topics 39

Summary of Quality Definition Issues

§ You Must Define Quality
– Before you can engineer it into your product
– … and before you can measure it
– … or test whether the product has the desired quality attributes

§ Quality has Multiple Elements
– It reflects a multitude of expectations

§ Quality is Relative
– Quality is in the eye of the customer

§ Quality encompasses fitness, value, and other attributes 



Copyright 2020, Dennis J. Frailey Software Testing Topics 40

So How do We Test or Measure Quality?

§ We will cover this in Part 2.
§ But first, a few more thoughts about testing.



Copyright 2020, Dennis J. Frailey Software Testing Topics 41

Observations on The Overall 
Testing Process



Copyright 2020, Dennis J. Frailey Software Testing Topics 42

Test and Evaluation

Evaluation: Appraising a product through one of the 
following:
– Examination, analysis, demonstration
– Testing
– or other means

Testing: Exercising a system to improve confidence 
that it satisfies requirements or to identify 
variations between desired and actual behavior.

“Evaluation” is the broader term.



Copyright 2020, Dennis J. Frailey Software Testing Topics 43

Testability
A product is testable if:

– It can be tested in a reasonable way (readily testable)

– The tests are well defined, comprehensive, and not overly redundant

– Each test can be directly traced to and from: 
§ product requirements, 
§ derived requirements resulting from design decisions, or 
§ design or coding elements calling for specific testing

– Each test failure can be directly traced to: 
§ a requirement that is not being met, or
§ A design element that was not properly implemented, or
§ A portion of the code that has a programming error

Good testing starts with testable 
requirements and designs.



Copyright 2020, Dennis J. Frailey Software Testing Topics 44

Testing is unsuitable when ...

§ It would destroy the product

§ It is too dangerous

§ It is too costly

§ It cannot reasonably be expected to provide 
confidence that requirements are satisfied

§ It cannot be done



Copyright 2020, Dennis J. Frailey Software Testing Topics 45

Evaluation Techniques 
(other than testing)

§ Examination 
– For example, reading designs or code or other 

documents to check for errors

§ Demonstration
– e.g. flying an airplane to show that it can fly
– e.g. running a program to show that it works

§ Other techniques (examples)
– providing a formal proof that a program is correct
– showing through statistical analysis that the 

probability of a defect is below a threshold



Copyright 2020, Dennis J. Frailey Software Testing Topics 46

The Steps Involved in a
Good Testing Process

§ Preparation

§ Test Execution

§ Repair of defects (debugging)



Copyright 2020, Dennis J. Frailey Software Testing Topics 47

Test Preparation Activities
§ Making sure that requirements are testable

§ Making sure that designs are testable

§ Developing test plans

§ Developing test cases

§ Writing testable code

§ Writing test code (or programming test machines)
§ Devising procedures for testing, inspecting and 

reviewing of results

These activities begin as requirements are being defined, and 
continue throughout the development process



Copyright 2020, Dennis J. Frailey Software Testing Topics 48

Reasons why Requirements/Designs
May be Hard to Test

§ Requirements may not be well understood

§ Requirements may not be well documented

§ What seems obvious to the customer or the system 
designer may not seem clear or obvious to the software 
developer or tester
– Different kinds of knowledge

– Unstated assumptions

§ The customer and the software developer may not agree on 
what constitutes an acceptable test

§ Changes made during software development may not be 
communicated to the software team



Copyright 2020, Dennis J. Frailey Software Testing Topics 49

Suggestions (slide 1 of 3)

§ A requirement or design feature is not complete until 
you have reached agreement on how it is to be tested
– For each requirement, reach agreement between the software 

team and the customer or system engineer on how the 
requirement is to be tested

– For each design feature, reach agreement between the software 
designer and the software test team on how the design feature is 
to be tested

www.cigniti.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 50

Suggestions (slide 2 of 3)

§ Control changes to requirements and design
– Don’t allow a requirements or design change without a clear 

understanding of the effect of the change on the software cost, 
schedule and technical development

– For each change to requirements or design, indicate how the 
corresponding tests must be changed.

Researchgate.net



Copyright 2020, Dennis J. Frailey Software Testing Topics 51

Suggestions (slide 3 of 3)

§ Keep track of which tests correspond to which 
requirements or design elements (traceability)

Ideal
Requirement 1                                Test 1
Requirement 2                                Test 2
Requirement 3                                Test 3

Acceptable
Requirement 1
Requirement 2                                               Test A
Requirement 3



Copyright 2020, Dennis J. Frailey Software Testing Topics 52

Less Desirable
Test 1

Requirement A                                              Test 2
Test 3

Undesirable
Requirement 1                                           Test A
Requirement 2                                           Test B
Requirement 3                                           Test C

Other Traceability Options



Copyright 2020, Dennis J. Frailey Software Testing Topics 53

Reasons Why Code May Be Difficult to Test

§ Code is not well structured
– Needlessly complex
– Poorly organized

§ Code elements do not trace directly to requirements or 
design elements
– So when the code causes a failure, it is hard to determine whether 

the problem is with the code or the design or the requirement

§ Code is not well documented or does not follow coding 
conventions
– Hard to understand
– Error prone

We will address this in 
parts 3 and 4



Copyright 2020, Dennis J. Frailey Software Testing Topics 54

Sample Outline of a Test Plan
§ Summary of Major Testing and/or Integration Steps
§ For each test and/or integration step:

– Purpose / goal of the step
– What equipment is needed and what configurations must be set up
– What hardware elements will be integrated/tested at this step
– What software components will be integrated/tested at this step
– Test cases to be performed (in order, if order is important)

ØFor each test case:
– what requirements will be tested and/or purpose of the test
– what procedures should be followed
– what results are expected

Ideally, this is started at the beginning of a project, with 
details filled in and revisions made as the project progresses



Copyright 2020, Dennis J. Frailey Software Testing Topics 55

Sample List of Test Cases
Test 
Case 

ID 

Test Case 
Name 

Summary Expected Results 

S2R1 Get GPS Data Pull the GPS data from the processing unit The data should match the values given by the GPS receiver.  
OR, if a GPS receiver is not available, then the data should 
match the canned data provided for testing purposes. 

S2R2 Get Radar Data – Raw A/D Samples 
(reduced range swath) 

Pull the radar data from the processor.  Format 
expected is the raw A/D samples 

The data should match the values given by the processor. 
(Details TBD.) 

S2R3 Get Radar Data – Decimated A/D 
Samples (full range swath) 

Pull the radar data from the processor.  Format 
expected is the decimated A/D samples. 

The data should match the values given by the processor. 
(Details TBD.) 

S2R4 Get Radar Data – Pulse Compressed 
Data 

Pull the radar data from the processor.  Format 
expected is the pulse compressed data. 

The data should match the values given by the processor. 
(Details TBD.) 

S2R5 Get Radar Data – CPI Range-Doppler 
Maps 

Pull the radar data from the processor.  Format 
expected is the CPI Range-Doppler maps. 

The data should match the values given by the processor. 
(Details TBD.) 

S2R6 Get Radar Data – Post NCI Range-
Doppler Maps 

Pull the radar data from the processor. Format 
expected is the Post NCI Range-Doppler Maps. 

The data should match the values given by the processor (Details 
TBD). 

S2R7 Get Radar Data – Exceedence Regions Pull the radar data from the processor. Format 
expected is the exceedence regions. 

The data should match the values given by the processor (Details 
TBD). 

S2R8 Get System Health Information Pull the radar data from the processor.  This can be 
a dummy dwell, but we need to check the header 
information to ensure the system health status is 
working. 

System Health information 

 



Copyright 2020, Dennis J. Frailey Software Testing Topics 56

Test Execution Activities

§ Conducting tests

§ Conducting reviews of test results

§ Conducting inspections of procedures or code

These are the steps where actual testing is performed.

Loginworks.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 57

Repair Activities

§ Debugging (finding the cause of each test 
failure)

§ Correcting errors

§ Rerunning tests, inspections, etc.

These can be very expensive activities if 
testing is not planned and performed well.

Re-running of tests can add 
significant cost and time to a 

project

Dselva.co.in



Copyright 2020, Dennis J. Frailey Software Testing Topics 58

Measuring the Progress of a 
Testing Activity



Copyright 2020, Dennis J. Frailey Software Testing Topics 59

Testing Requires Resources

Resources are entities required in order to perform software 
processes and produce software products

– People
– Computers
– Software
– Networks
– Time
– …

Resources usually cost money
Ø We want to use them efficiently –

not waste them. 
Ø And we want them to be available! 



Copyright 2020, Dennis J. Frailey Software Testing Topics 60

Some of the Things We Wish to Know About 
Testing Resources

§ Are they available as required?
– Staffing levels / employee turnover rates
– Training (frequency, suitability)
– Equipment and software availability
– Network bandwidth

§ Are they performing as desired?
– Are testing facilities and tools working well?
– Is the training effective?

§ Are the resources being used efficiently?
– Are we on schedule? Will the project be on time?
– Are we over or under our budget?
– What is our productivity?

www.chandoo.org



Copyright 2020, Dennis J. Frailey Software Testing Topics 61

Resource Measures are Important for
Managing a Project

§ They tend to be focused on costs and schedules 
relative to plans or deadlines

§ For example many projects use a work 
breakdown structure to measure project 
progress

§ Other examples of resource measures that tell 
us about project status
–Earned value / Burndown Charts
–PERT and GANTT charts (project status and plans)
–Employee or network workload measures
–Employee or equipment availability measures

Tutorialspoint.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 62

Resource Measures Often Measure People
§ This can lead to problems if people are not measured 

fairly
– People are very sensitive to fairness of measurements

§ Productivity of people is an especially problematic
thing to measure
– The person doing the hardest job tends to look like they 

are making the least progress

§ Even measuring things like defects can be misleading 
when applied to people
– The person developing the most complex part of the software 

tends to have more errors
– The person testing the most difficult part of the software tends 

to discover the most defects and to take the most time



Copyright 2020, Dennis J. Frailey Software Testing Topics 63

Measure Processes, Not People

§ It is important to measure things that affect 
productivity of people, such as:
–Training – is it accomplishing what we want it to accomplish?
–Turnover (planned and unplanned)
–Resource utilization
–Resource availability
–Staffing level
–Effectiveness and usability of processes and procedures

§ People will usually cooperate if you try to make their 
jobs more efficient
Ø But they will resist if you find ways to blame them



Copyright 2020, Dennis J. Frailey Software Testing Topics 64

Units Tested

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13

Week 

Tested

Plan
Actual

Makeup Plan
Projection

Resource Measures
Testing Progress

Today Deadline

Measuring testing progress helps us predict schedule.



Copyright 2020, Dennis J. Frailey Software Testing Topics 65

The Metric Should Not Be the Goal!

Suppose your goals are
– Good (effective) testing
– Efficient testing

Good uses for a testing progress metric:
– Identify problems in testing and use the information to find 

and fix the underlying problems
§ Perhaps the test code isn’t very good
§ Or perhaps there are equipment problems
§ Or perhaps you incorrectly estimated the difficulty of testing 

your software product

Potentially bad uses for a testing progress metric:
– Criticizing people for not meeting the deadline
– Rewards for the most tests done per week



Copyright 2020, Dennis J. Frailey Software Testing Topics 66

Using Testing Progress Metrics Improperly
Wrong Performance Goals

§ Real goal: good, efficient testing

§ Performance goal for testing team: 
– more tests complete per week

§ Potential consequences:
– Team makes tests simpler (and less effective) so they can 

get more tests done per week
– Team focuses on testing quickly instead of testing 

thoroughly and effectively
– Team creates smaller test cases rather than what makes sense

Time is wasted improving the numbers 
instead of improving the testing



Copyright 2020, Dennis J. Frailey Software Testing Topics 67

Using Testing Progress Metrics Improperly
Measuring Individual Performance

If you measure testing progress for individuals you 
might encourage people to …

– Run the easiest and least effective tests in order to get 
more tests complete per week

– Cut corners (skip parts of the testing process) when doing 
testing in order to get more tests done each week

– Use tools in ways that mask inefficiency
§ Making it appear they have done more than they actually have

– Test only the least complex parts of the software

And you might reward the wrong people – the ones who run the most 
tests, not the ones who do the most effective testing.



Copyright 2020, Dennis J. Frailey Software Testing Topics 68

Using Testing Progress Metrics Properly
§ Use the Test Progress metric as an indicator of your 

true situation
– If there’s a problem, fix the problem
– don’t 

§ pretend it isn’t there
§ encourage people to cover it up
§ blame people

§ Focus on the test processes and procedures
– Are your tests being developed properly?
– Are your tests being run properly?
– Are you properly estimating the time required for testing?

§ Enlist the aid of the software team to analyze the 
problems and make improvements

Dr-karma.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 69

Seeding and Tagging
A simple and effective way to 

assess Testing Progress



Copyright 2020, Dennis J. Frailey Software Testing Topics 70

Seeding and Tagging

Purpose: To help you estimate how many undetected 
errors (defects) are in your code

When to do this: During test planning and during the 
testing process

Suppose: You have been testing your code and have 
discovered D1 errors (defects).

Question: How many errors are left?

Technique: Seeding and Tagging

Concept: Introduce extra errors and see how many of 
them your test process has found.



Copyright 2020, Dennis J. Frailey Software Testing Topics 71

Overview

1. Inject extra errors
before testing starts

2. See how many of those errors you find during 
the normal testing process



Copyright 2020, Dennis J. Frailey Software Testing Topics 72

Seeding and Tagging Details

§ Introduce a given number of extra errors into the 
software -- say E of them

§ Run standard tests, detecting D2 of them

§ Compute D2/E = % of errors detected

§ Suppose D1 = number of genuine errors 
already detected

§ Then you assume the total number of errors in the 
software is

D1*E/D2



Copyright 2020, Dennis J. Frailey Software Testing Topics 73

Example of Seeding and Tagging

§ 200 defects found so far

§ You have injected 20 extra defects

§ You have found 12 of these extra defects

§ Therefore, assume total defects =
200 * 20 / 12 = 4000 / 12 = 333 total defects

=> 333 - 200 = 133 defects remaining

By performing this analysis from time to time, 
you can estimate your defect density and your 

testing progress over time.



Copyright 2020, Dennis J. Frailey Software Testing Topics 74

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 – Measuring Software Quality
Part 3 – Software Reliability
Part 4 - Defect Containment

Part 5 – Measuring Software Complexity



Copyright 2020, Dennis J. Frailey Software Testing Topics 75

Quality Attributes are
Seldom Directly Measurable

§ Fitness for intended use
§ Value to someone
§ Satisfaction of requirements

– Including implicit, unstated requirements
§ Maintainability
§ Reliability
§ Supportability
§ Testability
§ …

How can 
these be 
measured?

We need to find suitable ways to measure
these attributes.



Copyright 2020, Dennis J. Frailey Software Testing Topics 76

Some Attributes Are Measurable

Examples
– Water boils at 100o Centigrade

– My new application will complete at least 10 searches per 
minute

– Code written in C takes less memory space than code written in 
Python

The above statements may or may not be true, but they 
can all be tested because they are all measurable.

Elicitinsights.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 77

Some Attributes are Not Measurable

Examples:
– Joe’s code is better than Jan’s code
– Lisp is a superior programming language to C#
– Object oriented design produces code that is more 

maintainable

The above cannot be measured unless we define what 
we mean by:

– Better than
– Superior
– Maintainable

In a measurable way!



Copyright 2020, Dennis J. Frailey Software Testing Topics 78

Surrogates

In order to measure an un-measurable attribute 
– such as “quality” or “maintainability”

We may need to measure indirectly
– we measure something else that is associated with that attribute
– such as “defects” or “repair cost”

This alternative, measurable attribute is called a 
surrogate.



Copyright 2020, Dennis J. Frailey Software Testing Topics 79

Surrogates Are Not the Real Thing

A surrogate may or may not accurately reflect the 
desired attribute

Examples:

– Defects are a common surrogate for quality

– But lack of defects may or may not reflect quality.
§ Lack of defects may reflect failure to do effective testing
§ Or failure of the customer to use the product

– Repair cost may or may not reflect maintainability of 
the software
§ Perhaps “repair” included many changes to the software to 

add new features
§ Or perhaps the maintenance staff are not competent



Copyright 2020, Dennis J. Frailey Software Testing Topics 80

There Are Systematic Ways to
Identify Surrogates

§ Decomposition Approaches
– Fixed models
– Individualized models

§ Standardized Approaches
– These enable comparisons of software 

from different organizations
– But may not fit the desired quality 

characteristics of some software

There is little consensus on how to measure quality 
attributes, so most organizations define them in ways 

that fit their specific customer needs.

Bvicam.ac.in



Copyright 2020, Dennis J. Frailey Software Testing Topics 81

Decomposition Approaches
Boehm Software Quality Model

The concept 
here is to 

decompose 
quality 

attributes or 
factors into 
subfactors
until you 

find factors 
that are 

measurable.



Copyright 2020, Dennis J. Frailey Software Testing Topics 82

A Closer Look at the Boehm Model

General Utility

As-is Utility

Maintainability

Portability

Reliability

Efficiency

Human 
Engineering

Testability

Understandability

Modifiability

Device Independence

Completeness

Accuracy

Consistency

Primary Uses
Quality
Factors

Measurable 
Quality Criteria

Fenton’s 
Terminology



Copyright 2020, Dennis J. Frailey Software Testing Topics 83

Comments on Boehm’s Model

§ This is a way to decompose what we mean by 
“quality” until we have measurable attributes
(quality criteria)

§ These quality criteria are surrogates for quality
– There are many of them
– Some of them relate to multiple quality factors

Portability

Reliability Completeness

Quality
Factors

Measurable 
Quality Criteria



Copyright 2020, Dennis J. Frailey Software Testing Topics 84

Decomposition Approaches
McCall Software Quality Model

As you can 
see, it’s 

possible to 
establish a 

lot of 
criteria 

related to 
quality



Copyright 2020, Dennis J. Frailey Software Testing Topics 85

McCall Model – Quality Factors 
and (Measurable) Criteria

As with the 
Boehm model, 
some criteria 

relate to 
multiple 
quality 
factors



Copyright 2020, Dennis J. Frailey Software Testing Topics 86

Do I Really Need to Measure
So Many Attributes?

§ The various models tend to be comprehensive
– But you may need to use only a portion of a model for your 

specific situation
– Ultimately you need to measure only what will actually 

be used and be useful



Copyright 2020, Dennis J. Frailey Software Testing Topics 87

Measures of Software Quality

Based on

Defects or Faults or Failures



Copyright 2020, Dennis J. Frailey Software Testing Topics 88

Quality = Lack of Defects 
(or Lack of Faults or Lack of Failures)1

The advantage of this approach is that it is often easier to test 
for defects or failures and easier to measure them

than many other measures of quality

– However this approach may not capture what quality means to 
the end user
§ Ease of use
§ Speed
§ …

– And it may not reflect all that the developer considers important
§ Maintainability
§ Supportability
§ … 1 Defects and faults usually mean the 

same thing – causes of failures. 



Copyright 2020, Dennis J. Frailey Software Testing Topics 89

Defect Density1

Defect Density =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒆𝒇𝒆𝒄𝒕𝒔

𝑺𝒊𝒛𝒆 𝒐𝒇 𝑺𝒐𝒇𝒕𝒘𝒂𝒓𝒆 𝑷𝒓𝒐𝒅𝒖𝒄𝒕

Variations:
– Failure Density (instead of defects)
– Number of Defects (this can be defined in different ways)

§ Known Defects
§ Total Defects (Known Defects + Latent Defects2)

– Size of Software Product (can be defined in different ways) 
§ It depends on the definition of size

1 Sometimes called “defect rate”, although this is inaccurate
2 Latent defects are defects we have not yet discovered



Copyright 2020, Dennis J. Frailey Software Testing Topics 90

Defect Density Advantages

§ Easily measured, compared with other options

§ Gives a good, general idea of the overall quality of the 
software

§ This measure has been used for over 50 years to 
measure software, and overall the defect density has 
correlated well with perceived quality of products



Copyright 2020, Dennis J. Frailey Software Testing Topics 91

Defect Density Drawbacks
(1 of 3)

§ People can’t always agree on what constitutes a 
defect
– Failure in operation vs mistake in the code
– Post-release defects vs defects found during development
– Discovered vs latent defects

§ Severity of problems caused by defects may be hard 
to assess
– Some software defects have no significant impact on 

customer’s perception of quality
– Different customers use the software in different ways



Copyright 2020, Dennis J. Frailey Software Testing Topics 92

Example from IBM1

§ Approximately one out of three defects will only 
cause a user failure once in 500 years.

§ A very small portion of defects (<2%) cause the 
most important user failures

Number of defects may not be strongly 
correlated to the frequency or severity 

of end user failures.

1 See Adams in reference list.



Copyright 2020, Dennis J. Frailey Software Testing Topics 93

Defect Density Drawbacks
(2 of 3)

§ Different measures of the 
time scale

– Amount of time since 
release of product 

– Amount of time the product 
is actually used 

– Processing time actually 
used by the product

Release Purchase Installation First 
Use

Jan Feb Mar Apr May Jun Jul Aug

First 
Failure

No 
problems 
with the 

software?

Not yet.
But we only 
use it once a 

year.

Researchgate.net



Copyright 2020, Dennis J. Frailey Software Testing Topics 94

Defect Density Drawbacks
(3 of 3)

§ Different measures of size
– This can make it hard to compare different projects or processes 

or development methods or organizations



Copyright 2020, Dennis J. Frailey Software Testing Topics 95

What is Defect Density Telling Us?

§ The quality of our software 
product?

Or

§ The effectiveness of our defect 
detection and correction 
process?



Copyright 2020, Dennis J. Frailey Software Testing Topics 96

Despite These Drawbacks, Defect 
Density is Very Widely Used

Some metrics that incorporate defect density
– Cumulative defect density

§ During development or after delivery

– Total serious defects found

– Mean time to fix serious defects

– Defects found during design reviews per KLOC

– Code inspection or peer review defects found per KLOC

– System test errors found per KLOC

– Customer-discovered problems per KLOC or per product



Copyright 2020, Dennis J. Frailey Software Testing Topics 97

Usability
Hard to Test For & Hard to Measure

Commonly used concepts of usability:
– User Friendliness
– Ease of use

Formal Definition:
Usability is the degree to which a system can 

be used by specified users to achieve 
specified goals with effectiveness, efficiency 
and satisfaction in a specified context of use.

ISO/IEC 25010 (2011)

This is a very complex concept that is hard to 
measure, but important to most end users



Copyright 2020, Dennis J. Frailey Software Testing Topics 98

Three Categories of Usability1

§ Effectiveness
– Can users complete the tasks correctly?

– Example: Effectiveness =
𝑸𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗𝑸𝒖𝒂𝒍𝒊𝒕𝒚

𝟏𝟎𝟎

§ Efficiency
– Time required to complete the tasks

– Example: Efficiency =
𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆𝒏𝒆𝒔𝒔
𝑻𝒂𝒔𝒌 𝑻𝒊𝒎𝒆

§ Satisfaction
– Degree to which the end user likes the software

ØThis is a very subjective measure

1 See Fenton, section 10.3 for further details



Copyright 2020, Dennis J. Frailey Software Testing Topics 99

Internal Attributes Generally Viewed as 
Related to Usability

These are more readily measured and 
can be measured before the software is released

§ Good use of menus

§ Good use of graphics

§ Good help functions

§ Consistent interfaces

§ Well-organized reference manuals and help files

Use of these to predict usability is not recommended. 

Researchers have been 
unsuccessful in relating these 
to effectiveness, efficiency or 

customer satisfaction.



Copyright 2020, Dennis J. Frailey Software Testing Topics 100

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 – Measuring Software Quality
Part 3 – Software Reliability
Part 4 - Defect Containment

Part 5 – Measuring Software Complexity



Copyright 2020, Dennis J. Frailey Software Testing Topics 101

Contents

§ Introduction

§ Measuring Reliability

§ Software Reliability Issues

– Measuring Time

– Application Characteristics

– Reliability Growth

§ Summary



Copyright 2020, Dennis J. Frailey Software Testing Topics 102

Introduction



Copyright 2020, Dennis J. Frailey Software Testing Topics 103

What can be Measured
• It does what was specified
• Failure rates are low
• etc.

End-User’s Perspective
• It does what I want
• It never fails
• etc.

Not a Perfect 
Match

Reliability is the “Bottom Line” of 
Software Quality

§ Reliability is the most conspicuous attribute 
of quality

§ But what do we mean by reliability?



Copyright 2020, Dennis J. Frailey Software Testing Topics 104

Reliability is Not Correctness

§ Reliability means that it does what you want 
it to do often enough to be satisfactory

Whereas

§ Correctness is a binary, “yes or no” 
condition

§ Software is almost never perfectly correct
– But it can be highly reliable



Copyright 2020, Dennis J. Frailey Software Testing Topics 105

§ Assumption: failure usually results from physical effects
– breakage, wearout, fatigue, corrosion, overheating, shock, …

§ Or incorrect manufacturing processes

Hardware Reliability Theory
Focuses on Materials and Production

§ The theory of hardware 
reliability is founded on the 
assumption that these are 
random events



Copyright 2020, Dennis J. Frailey Software Testing Topics 106

But Product Design and Development
Can Also be Factors in
Quality & Reliability

Wideanalysis.co.uk



Copyright 2020, Dennis J. Frailey Software Testing Topics 107

Poor Design & Development Practices
Can Lead to Hardware Failure

§ The design may put undue strain on a part
– Example: frequently used key on keyboard

§ Wears out sooner than the rest of the keyboard

§ Was the failure due to a faulty key? 
– or to the design of the keyboard, causing 

excessive wear on that key?

§ What if the product wasn't properly tested?
– Car overheats in the desert (never tested that 

severely)

Freeimages.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 108

Poor Software Development Practices 
Can lead to Failure

–Requirements

–Design

–Testing

–Coding

–Configuration 
Management

Software failures are often attributable to 
software development practices



Copyright 2020, Dennis J. Frailey Software Testing Topics 109

Software Reliability

§ Failure: The software does not do what it is 
supposed to do

§ Defect or Fault: The reason for the failure
– Bad code/data/design/requirements
– Bad configuration control
– etc.

“The extent to which software correctly 
performs the functions assigned to it”

But as we will see, not all failures are 
due to defects in the software.



Copyright 2020, Dennis J. Frailey Software Testing Topics 110

Ways to Improve Software Reliability

www.softwarereliability.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 111

Improving Software Reliability
Option 1

Design software to be fault tolerant
– Redundancy
– Multiple algorithms

§ This approach has been shown to have very 
little effect on overall software reliability
– The redundant code introduces more chance of 

error

Ø It is a better fit to the hardware paradigm 
that involves fatigue of parts



Copyright 2020, Dennis J. Frailey Software Testing Topics 112

Improving Software Reliability
Option 2

Develop software to be free of defects
– Prevention activities
– Detection activities

§ This is where software experts usually concentrate 
their efforts

§ Being free of all defects is not usually possible to 
achieve

§ But with modern techniques of testing, quality 
assurance and quality engineering, it is possible to 
make defects relatively uncommon

Cost of Quality 
Analysis



Copyright 2020, Dennis J. Frailey Software Testing Topics 113

But Many Failures Are Not Due to 
Defects in the Software

Possible Causes of Software Failures
(other than defects):

– Incorrect or changing requirements
– Lack of user involvement in defining the 

requirements
– Unrealistic expectations
– Operator error
– Poor communication between users and developers
– Confusing or inadequate documentation
– Unexpected hardware failures
– Unexpected interaction with other software or 

systems
– …



Copyright 2020, Dennis J. Frailey Software Testing Topics 114

Improving Software Reliability
Option 3

Study how software fails and focus on 
understanding failures

Examples of issues:

- Some failures are caused by unexpected 
interactions with other systems

- Some failures occur because the problem 
is not well understood

- Over time, software tends to become 
more reliable
Ø This is known as Reliability growth



Copyright 2020, Dennis J. Frailey Software Testing Topics 115

Sometimes Failures Are Due to Complex 
Causes

The Dissapearing Warehouse

1. A major retail company had been shutting 
down some of its warehouses to save 
money.

2. A defective software program somehow 
erased a warehouse from the system, even 
though it was still active.

3. Goods destined for the warehouse were 
automatically rerouted elsewhere
– Goods in the warehouse just stayed there



Copyright 2020, Dennis J. Frailey Software Testing Topics 116

The Disappearing Warehouse (continued)

4. For three years, nothing arrived at or left 
the warehouse
– The employees at the warehouse said nothing 

because they feared their warehouse would be 
shut down and they would lose their jobs

5. The employees kept getting paid because 
the payroll was handled by a different 
computer system

6. When upper management finally figured 
out what happened, they fixed the problem 
and continued operation as usual
– They were embarrassed to let anyone know of this 

mistake



Copyright 2020, Dennis J. Frailey Software Testing Topics 117

Measuring Reliability

Reliability-safety-software.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 118

The Goal of Measuring Software Reliability

To Predict When
or How Often

the Software Will Fail

This is the information need. 

Note that we assume it will fail but want 
to know how often or when.



Copyright 2020, Dennis J. Frailey Software Testing Topics 119

The Problem of Measuring Reliability

§ We cannot know when the software will fail
– Unless the failure was designed into the software

§ So the best we can do is to predict failure in 
terms of probabilities
– In a given time period:

§ How likely is it to fail?
§ How likely is it to function without failure?

– On average:
§ How soon will it fail?

The theory of reliability is based on 
analysis of probabilities.



Copyright 2020, Dennis J. Frailey Software Testing Topics 120

Note about Terminology

§ Terminology for the various functions and other 
concepts discussed here tends to vary among 
statisticians and reliability experts

§ The terminology we use in these slides matches that 
used in Fenton’s book

§ But from time to time we will mention other 
terminology that is often used



Copyright 2020, Dennis J. Frailey Software Testing Topics 121

Definitions

Failure 
– When the product does not do what it is expected to do for a 

given set of input or operating conditions.

Fault (depends on author) 
– A condition that causes failures.

Defect (depends on author):
– A fault found before / after product release
– Any cause of failure
– Any error, regardless of whether it is caught before release
– Other terms: bug, mistake, malfunction, etc.



Copyright 2020, Dennis J. Frailey Software Testing Topics 122

More Definitions – Failure Rate

Failure Rate (l) - the rate at which failures occur
– In some cases, l is a constant, such as “3 failures per thousand 

hours of operation”.

– In other cases, it is not a constant
ØIt is often expressed as a function of time:
l(t) = <some equation involving t>

In both cases, l represents the
most probable value,

based on
what is known about the system and its operation.



Copyright 2020, Dennis J. Frailey Software Testing Topics 123

More Definitions – Mean Time to Failure

Mean Time to Failure (MTTF) (�) - the time 
when the first failure is expected to occur (on 

average)
– In some cases, � is a constant, such as “520 

hours”

– In other cases, it is not a constant
ØIt is often expressed as a function of time:

�(t) = <some equation involving t>

In both cases, � represents the 
most probable value,

based on what is known about the system and 
its operation.



Copyright 2020, Dennis J. Frailey Software Testing Topics 124

The Relationship Between
Failure Rate and MTTF

� = 1/ l

Or

�(t) = 1 / l(t)

If it is a constant

If it is a function



Copyright 2020, Dennis J. Frailey Software Testing Topics 125

What is Reliability?

Reliability is the probability that software will 
continue to function correctly (without failure)

for a given time period
under given conditions

– The time period can be measured in natural units or time 
units
§ Natural unit – something that measures the amount of 

processing performed by the software, such as “runs”, pages 
of output, screens displayed, jobs completed, etc.

§ Time units - hours, minutes, days, weeks, etc.

Reliability can also be measured as failure 
intensity – the number of failures expected 

per natural unit or time unit



Copyright 2020, Dennis J. Frailey Software Testing Topics 126

Measuring Reliability via 
Probabilities

If reliability is measured in terms of a time 
interval, denoted t, then 

– t is a random, failure free time interval.  
– We would like to know: how long is t?

§ In other words, how long will the software function 
without failure?

– But since we cannot know this, we can only 
estimate the probability of failure for a given 
value of t.



Copyright 2020, Dennis J. Frailey Software Testing Topics 127

Reliability is Usually Expressed as a 
Function:

R(t) = probability of operation without failures
in time t

(i.e., in the interval 0-t)

For hardware reliability theory, there are three 
important assumptions about failures:

1. The system is functioning correctly at time 0

2. Failures occur randomly

3. Failures occur at a constant rate, that depends on the 
specific hardware.  This rate is usually represented by the 
symbol l



Copyright 2020, Dennis J. Frailey Software Testing Topics 128

Discussion of These Assumptions
As They Apply to Software

1. The system is functioning correctly at time t = 0
– This assumption makes sense for hardware and software

2. Failures occur randomly
– This assumption makes some sense for hardware but not 

necessarily for software

3. Failures occur at a constant rate, l
– This assumption may not make sense for hardware because, 

as hardware ages, failures are more common
– This assumption makes little sense for software because of 

reliability growth (see later slides)
– So for both hardware and software, we often represent failure 

rate by a continuous function f(t) rather than as a constant l.



Copyright 2020, Dennis J. Frailey Software Testing Topics 129

Reliability is Exponential if All Three 
Assumptions are True

R(t) = probability of operation without
failures in time interval 0-t

l is the failure rate, which is constant according to 
assumption 3.

This can also be expressed as:

� = 1/l is the mean time to failure

R(t) = e-t/a

R(t) = e-lt



Copyright 2020, Dennis J. Frailey Software Testing Topics 130

The Exponential Failure Rate is Very 
Convenient for Analysis

As we shall see, there are many relatively 
simple ways to analyze exponential data

But software failures may not 
occur randomly or at a 

constant rate

Nevertheless, the exponential failure rate is 
useful in studying software reliability.



Copyright 2020, Dennis J. Frailey Software Testing Topics 131

Why Is Exponential Failure Rate Useful 
for Understanding Software Reliability?

1. The well-established theory of hardware reliability, 
which assumes exponential failure rates, provides a
§ framework

and a set of 
§ terminology and concepts
that can be applied to non-exponential situations

2. The exponential case is relatively easy to explain so 
it’s good for training and education

3. Exponential rates often help with analysis of software 
situations even if the failure rate isn’t exponential .



Copyright 2020, Dennis J. Frailey Software Testing Topics 132

Graph of Exponential Reliability Function

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

t = time since product release

Reliability Function for Exponential Distribution

R(t) = e-t/a

Value of a determines 
shape of curve 



Copyright 2020, Dennis J. Frailey Software Testing Topics 133

a Measures Reliability as a Constant

§ a is the mean time to failure (MTTF).
– Actually, the mean time to the first failure.

§ For large values of a, the probability of 
operation without failure remains high for a 
longer period of time

§ For small values of a, the probability of 
operation without failure deteriorates 
quickly

If the reliability function is not exponential, there 
may not be a simple constant to measure reliability 

of the total product.



Copyright 2020, Dennis J. Frailey Software Testing Topics 134

The desired value of t depends a lot on the 
application and the priorities

§ Commercial application
– t is large
– the goal is to have few failures over the 

life of the application in order to keep
maintenance cost low

§ Real time application 
– e.g. an aircraft application
– t is relatively short 
– but failures in operation are critical – the goal is 

zero failures during operation of the aircraft

Additional Notes about 
Reliability



Copyright 2020, Dennis J. Frailey Software Testing Topics 135

Failure Function or 
Unreliability Function

Another popular approach is to look at the 
probability of a failure:

F(t) = 1 - R(t) = probability of failure in time 
interval 0-t

§ The latter is called a failure function§.

§ It is the cumulative distribution function of 
the time interval 0-t.

§ For the exponential distribution, the failure 
function is: F(t) = 1 - e -t/a

§ This is also known as the distribution function or the 
cumulative density function or the unreliability function.



Copyright 2020, Dennis J. Frailey Software Testing Topics 136

Graph of Exponential Failure Function

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

t = time since product release

Failure Function for Exponential 
Distribution

F(t) = 1 - e-t/a



Copyright 2020, Dennis J. Frailey Software Testing Topics 137

Probability Density Function or 
Probability Distribution Function

This function attempts to put it in another 
form that means something to a user:

“(approximately) what is the likelihood that a 
failure will occur at time t”

For the exponential distribution, the formula 
is:

or

f(t) = dF(t)/dt

f(t) = a-1e-t/a f(t) = le-lt



Copyright 2020, Dennis J. Frailey Software Testing Topics 138

Graph of Exponential Density Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9

t = time since product release

f(t) = a-1e-t/a

The value at 0 is l = a-1. 
This graph is for a = 2

f(t) = le-lt



Copyright 2020, Dennis J. Frailey Software Testing Topics 139

All three functions
(a = 2)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9

t = time since product release

R(t) F(t) f(t)

Note that given any 
one of these we can 
compute the others.



Copyright 2020, Dennis J. Frailey Software Testing Topics 140

Conditional Failure Rate (l)
(Hazard Function; Failure Intensity)

This is an attempt to estimate the anticipated number 
of times the software will fail in a given time interval, 

assuming no prior failures.

l(t) = f(t)/R(t) = -dR(t)/dt



Copyright 2020, Dennis J. Frailey Software Testing Topics 141

How to Determine l(t)

§ I.e., the higher the reliability, the lower the 
failure rate

§ If l is a constant, then a is a constant and

l= 1/a

l(t)= 1/a(t)



Copyright 2020, Dennis J. Frailey Software Testing Topics 142

Failure Rate
vs Number of Defects

Most of the hardware-based models assume 
the failure rate is directly related to the 

number of defects remaining in the product.

But, as we’ve discussed, software 
failures are not always due to defects 

in the software.

Furthermore, some defects cause no 
failures and others cause major failures.



Copyright 2020, Dennis J. Frailey Software Testing Topics 143

Problems with the Assumptions 
for Classic Hardware Definitions

(when applied to software)
§ The classic assumption for hardware devices is that 

defects are random with respect to the structure of the 
product

– But this is usually not true for software
§ Some parts of software are harder to write than others and 

thus more likely to have defects

§ The classic hardware assumption assumes testing is 
uniform with respect to the product

– But with software, some parts are likely to be more 
effectively tested than others



Copyright 2020, Dennis J. Frailey Software Testing Topics 144

More Problems with Classic 
Hardware Assumptions

§ All defects are equally likely to occur
– But for software it depends on the paths 

taken most often

§ All defects produce equally serious 
failures
– Clearly not the case for software

§ Testing correctly simulates normal, 
stressful and unusual conditions
– Generally this is very hard to do for software



Copyright 2020, Dennis J. Frailey Software Testing Topics 145

Error Probability
Hardware vs. Software

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12

Probability of Failure vs. Time

Hardware Software

Software often shows 
reliability growth



Copyright 2020, Dennis J. Frailey Software Testing Topics 146

The Bathtub Curve is Often A 
Better Description for Hardware



Copyright 2020, Dennis J. Frailey Software Testing Topics 147

Software Tends to Get More 
Reliable Over Time Because 

Parts Don’t Wear Out

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Defect Rate after Product Release

Hardware Software

Early failures

Wearout

[In the absence of major modifications]



Copyright 2020, Dennis J. Frailey Software Testing Topics 148

Software Reliability Issues



Copyright 2020, Dennis J. Frailey Software Testing Topics 149

How to Measure Time
When Evaluating Software Reliability

§ The measure of time is a matter of 
considerable dispute

§ This may dramatically affect the measure 
of reliability



Copyright 2020, Dennis J. Frailey Software Testing Topics 150

Three Ways to Measure Time
for a Software Product

§ Real Time (Calendar Time)
– Number of weeks or months since some event

§ Use Time
– Number of hours the software is in actual use

§ Processor Time
– Number of hours using the processor

Each of these produces different results and 
may fit different models

Natural 
Units



Copyright 2020, Dennis J. Frailey Software Testing Topics 151

The Nature of The Application

Different applications can 
have very different 
notions of reliability



Copyright 2020, Dennis J. Frailey Software Testing Topics 152

Different Applications -
Different Reliability Implications

Application: Financial Transactions
Problem: Floating Point Round off Errors
Not a Problem: Excessive Time for Calculations

Application: Space Craft Flight Path 
Calculations (ground based)

Same as Financial Transactions

Application: Space Craft Local Navigation
Problem: Excessive Time for Calculations
Not a Problem: Floating Point Round off Errors



Copyright 2020, Dennis J. Frailey Software Testing Topics 153

Reliability Growth

Software reliability generally gets better over 
time

– Assuming you fix bugs and don’t make major 
changes

Ø This is known as the “reliability growth” 
phenomenon

Predicting reliability growth is very difficult
– Depends on many factors such as type of 

application

See Fenton, Chapter 11, for discussion of 
several reliability growth models



Copyright 2020, Dennis J. Frailey Software Testing Topics 154

Study Questions (1 of 2)

§ Explain why software failures are not 
random although they often are for 
hardware

§ Discuss the differences in how hardware 
fails and how software fails. Use examples.

§ Give two examples of ways that software 
can fail that are not the result of defects in 
the software

§ A colleague assumes that reliability means 
correctness. Explain the difference using an 
example.



Copyright 2020, Dennis J. Frailey Software Testing Topics 155

Study Questions (2 of 2)

§ Explain reliability growth, using an 
example.

§ Explain why software may have reliability 
growth whereas hardware usually doesn’t.

§ Give two examples of software applications 
for which the reliability requirements are 
different.  Use different examples from any 
that were used in the class lectures.



Copyright 2020, Dennis J. Frailey Software Testing Topics 156

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 – Measuring Software Quality
Part 3 – Software Reliability
Part 4 - Defect Containment

Part 5 – Measuring Software Complexity



Copyright 2020, Dennis J. Frailey Software Testing Topics 157

Defect Containment (Phase Containment)

This requires that you collect additional information 
about each defect you discover during an inspection 
or as a result of a test:

– In what phase of development was the defect created?

– In what phase was it detected?

Insights.sei.cmu.edu



Copyright 2020, Dennis J. Frailey Software Testing Topics 158

Note on Defect Containment

§ There are several variations on this method

§ All use the same basic data (base measures) but they use 
the data in different ways

In this lecture we will illustrate 
one of the variations on this 

method.
You may find others at 

www.sei.cmu.edu



Copyright 2020, Dennis J. Frailey Software Testing Topics 159

Example of Defect Containment

§ Suppose you detect a lot of defects during system test

§ And suppose you discover that most of them occurred due 
to bad design procedures

§ Then you know that the best way to fix the problem is to 
improve your design procedures



Copyright 2020, Dennis J. Frailey Software Testing Topics 160

In-Phase Defects

In-phase defects are those that are corrected in the 
same development phase where they were introduced

- Example: a coding error that is caught and corrected 
while you are writing the code, before going to system test

Ø Measuring in-phase defects tells you which parts of 
your process generate large numbers of defects 

In-phase defects are generally the 
least costly to correct.



Copyright 2020, Dennis J. Frailey Software Testing Topics 161

Out-of-Phase (Leaking)  Defects

Out-of-phase defects are those that are detected (and 
corrected) after they leave the phase where they 

were introduced
- Example: a design error caught during unit test

Ø Measuring out-of-phase defects indicates how often 
you allow defects to “leak” from the phase where 
they originate
– this is a predictor of post-release failures
– and also a good help in root cause analysis

Out-of-phase defects are generally 
the most costly to correct.

Finding the 
Ultimate Cause 

of a Defect



Copyright 2020, Dennis J. Frailey Software Testing Topics 162

Defect Containment Analysis
Step 1 – Collect the Data

Defect Report

Description ______________

________________________

Phase where found ____

Phase where introduced ___

________________________

Priority _____ Type _____

Estimated Cost to Fix _____

etc.

Track Each Defect and Record Phase of Origin

Some of this 
information 
may not be 
determined 

until you 
have 

debugged 
the software



Copyright 2020, Dennis J. Frailey Software Testing Topics 163

Phase where Defect was Inserted

Phase 
where 
Defect 

was 
Detected

I&T

I&T

C&T

C&T

DDPD

DD

PD

RA

RA

POST 
REL.

POST 
REL.

15

23

1783

5512

42 8

15

Defect Containment Analysis
Step 2 – Record and Display the Data

This 
shows the 

data at 
the end of 
the C&T 
phase

Defect Containment Matrix – Sequential Process



Copyright 2020, Dennis J. Frailey Software Testing Topics 164

Scrum where Defect was Inserted

Scrum 
where 
Defect 

was 
Detected

S5

S5

S4

S4

S3S2

S3

S2

S1

S1

POST 
REL.

POST 
REL.

15

23

1783

5512

42 8

15

Defect Containment Analysis
Step 2 – Record and Display the Data

This 
shows the 

data at 
the end of 

the 4th
SCRUM

Defect Containment Matrix – SCRUM Process



Copyright 2020, Dennis J. Frailey Software Testing Topics 165

Defect Containment Analysis Step 3 -
Using the Data

If you see many out-of-phase defects in a specific cell, 
you can narrow down the source of defects

Phase where Defect was Inserted

Phase 
where 

Defect was 
Detected

I&T

I&T

C&T

C&T

DDPD

DD

PD

RA

RA

POST 
REL.

POST 
REL.

15

23

1783

5512

42 8

15

A lot of defects originate during requirements 
analysis but are not detected until detailed design 

A lot of defects are created 
during preliminary design



Copyright 2020, Dennis J. Frailey Software Testing Topics 166

Defect Containment Analysis Step 4 -
Using the Data to Provide 

Additional Insight

Over time, you can correlate 

§ the number of defects in the matrix

§ to the number of failures found by the customer

Ø You can use this to predict and ultimately to 
manage the number of failures

A method for doing this will be shown briefly in today’s lecture



Copyright 2020, Dennis J. Frailey Software Testing Topics 167

Observations on This Method

1. Definition of a defect must be adhered to in a 
consistent way across the project and, preferably, 
across all projects in an organization
– Some projects may resist defining defects the same way as 

other projects.

2. As shown, there is no distinction by type or 
severity of defect

– But this distinction can also be made if the original data are 
good enough)



Copyright 2020, Dennis J. Frailey Software Testing Topics 168

If you detect and correct defects early, it greatly 
reduces cost and reduces post-release failures (i.e., 

those seen by the customer)

Ø But this requires very good understanding of 
requirements and of customer “care-abouts”

Dau.dodlive.mil

A Key Lesson Learned from Measuring 
Defect Containment



Copyright 2020, Dennis J. Frailey Software Testing Topics 169

Contained and Leaking Defects

RA PD DD C&UT I&T Post Rel
RA 15
PD 12 55
DD 22 8 23
C&UT 15 3 8 17
I&T
Post Rel

Ph
as

e 
of

  
D

et
ec

ti
on

Phase of Injection

Out-of-phase or Leaking

In-phase or Contained



Copyright 2020, Dennis J. Frailey Software Testing Topics 170

Large Numbers Indicate
Software Development Process Problems

§ Large numbers in any column indicate that your 
development process is generating many defects in 
that process phase

§ A large number in a “leaking” cell means you are 
also paying a lot of money for rework 

This tells you where to focus 
process improvement efforts



Copyright 2020, Dennis J. Frailey Software Testing Topics 171

A Typical Defect Containment Chart

Phase Originated
Phase
Detected

RA PD DD CUT I&T SYS INT POST REL total

RA 730 730
PD 158 481 639
DD 19 2 501 522
CUT 15 0 12 63 90
I&T 25 4 35 321 9 394
SYS INT 4 0 7 19 4 2 36
POST REL 48 2 0 36 0 0 67 153

total 999 489 555 439 13 2 67 2564

Least Costly Defects are on the Diagonal 

These defects are “Contained” within the step where they were caused



Copyright 2020, Dennis J. Frailey Software Testing Topics 172

Escaping Defects are Those
Not Detected until After Release

Phase
Originated

Phase
Detected

RA PD DD CUT I&T SYS INT POST
REL

total

RA 730 730

PD 158 481 639

DD 19 2 501 522

CUT 15 0 12 63 90

I&T 25 4 35 321 9 394

SYS INT 4 0 7 19 4 2 36

POST
REL

48 2 0 36 0 0 67 153

total 999 489 555 439 13 2 67 2564

Escaping Defects Cost the Most of All



Copyright 2020, Dennis J. Frailey Software Testing Topics 173

Other Uses of
Defect Containment Data

There are many uses of defect containment

§ Calculating total repair cost
– By recording labor cost to repair defects

§ Calculating rework cost
– Reduction in rework can be compared with

cost of prevention activities

§ Organizational-level analysis

§ Prediction of defects and warranty costs

§ Prediction of reliability

Aspennw.com

Ijser.org

Sciencedirect.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 174

Defect Repair Cost

RA PD DD C&UT I&T Post Rel
RA $1

PD $12 $2

DD $22 $8 $2

C&UT $45 $18 $8 $2

I&T
Post Rel

Ph
as

e 
of

  
D

et
ec

ti
on

Phase of Injection

Cell i,j indicates the

average labor cost 

to repair a defect 

created in phase i and

detected in phase j

Labor Cost to Repair Defects Aspennw.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 175

Total Repair Cost

If you multiply the defect containment chart by the 
“labor cost to repair” chart, you get total repair cost

Cell-wise
multiplication

Defect 
Counts

Cost to 
Repair

Total 
Repair Cost

Aspennw.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 176

RA PD DD C&UT I&T Post Rel
RA $15

PD $144 $110

DD $484 $64 $46

C&UT $675 $54 $64 $34

I&T
Post Rel

Ph
as

e 
of

  
D

et
ec

ti
on

Phase of Injection

Total Repair Cost Example

Aspennw.com

Cell i,j indicates the

total labor cost 

to repair all defects 

created in phase i and

detected in phase j



Copyright 2020, Dennis J. Frailey Software Testing Topics 177

Rework Costs Are 
The Portion Of the Prior Chart
That Are Not On The Diagonal

RA PD DD C&UT I&T Post Rel
RA $15

PD $144 $110

DD $484 $64 $46

C&UT $675 $54 $64 $34

I&T
Post Rel

Ph
as

e 
of

  
D

et
ec

ti
on

Phase of Injection

Costs off-diagonal are rework costs

Ijser.org



Copyright 2020, Dennis J. Frailey Software Testing Topics 178

This Concept Applies
Throughout the Product Lifetime
You can track repair cost and rework cost

during development
and 

after delivery to the customer

§ You can further break defects down by characteristics:
– Phase of Development where Defect Occurred
– Severity
– Importance to Customer
– Cost to Repair
– Time to Repair
– Which Part of the Software was Responsible
– Etc.

Ijser.org

Aspennw.com

Imgkid.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 179

This Can Help You Justify
Process Improvements

Rework costs are the equivalent of “software scrap”

§ If you can reduce scrap by investing in defect 
prevention activities, you can save a lot of money 
(see earlier  slides)

§ If you make an improvement in your development 
process, you can use the defect containment chart to 
show the savings in reduced repair cost

§ And you can use the chart to determine which parts 
of the process are most important to improve

Ijser.org



Copyright 2020, Dennis J. Frailey Software Testing Topics 180

Analyzing Defect Data at the 
Organizational Level

§ By collecting data from many projects, we can show 
historical costs for rework 

§ And we can also show patterns of defect containment

…

Organization 
Data

Project 
A Data

Project 
B Data

Project 
C Data

Project 
N Data



Copyright 2020, Dennis J. Frailey Software Testing Topics 181

Organizational Analysis of Defect 
Containment Data

Analysis of defect containment data for many projects 
over a period of time

may show such organizational information as:
–Most frequent types of defects

–Most costly defects

–Time required to fix defects

–Process steps generating the most defects

–Which design standards help or hurt defects

Typically we collect the data needed for
statistical process control: 

averages, ranges, distributions, maximum, minimum, etc.



Copyright 2020, Dennis J. Frailey Software Testing Topics 182

Example: Determining an 
Organizational Process Metric

Defect 
Data from 

SA/SD 
Projects

Defect 
Data 

from OO 
Projects

SA/SD Defect Pattern OO Defect Pattern



Copyright 2020, Dennis J. Frailey Software Testing Topics 183

UT Dallas 

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality 
Relates to Testing)

Part 2 – Measuring Software Quality
Part 3 – Software Reliability
Part 4 - Defect Containment

Part 5 – Measuring Software Complexity



Copyright 2020, Dennis J. Frailey Software Testing Topics 184

Contents

§ Complexity: what and how to measure

§ Structured Programs and Flowgraph Analysis

§ Measures of Complexity

§ Closing Remarks



Copyright 2020, Dennis J. Frailey Software Testing Topics 185

Contents

Ø Complexity: what and how to measure

§ Structured Programs and Flowgraph Analysis

§ Measures of Complexity

§ Closing Remarks



Copyright 2020, Dennis J. Frailey Software Testing Topics 186

Complexity

We tend to think that complex software is 
more difficult to develop, test and maintain 
and has greater quality problems.

But what do we mean by complexity?

Dictionary definitions of complex:
1. Composed of many interconnected parts
2. Characterized by a very complicated 

arrangement of parts
3. So complicated or intricate as to be hard to 

understand



Copyright 2020, Dennis J. Frailey Software Testing Topics 187

Complex vs Complicated
Complicated: being difficult to understand but with time 
and effort, ultimately knowable

Complex: having many interactions between a large 
number of component entities.

– As the number of entities increases, the number of interactions
between them will increase exponentially

– It can get to a point where it would be impossible to know and 
understand all of them. 

Hotel-r.net



Copyright 2020, Dennis J. Frailey Software Testing Topics 188

Changing Complex Software
§ Higher levels of complexity in software increase the risk of 

unintentionally interfering with interactions and so increase 
the chance of introducing defects when making changes. 

§ In more extreme cases, complexity can make modifying the 
software virtually impossible. Changes introduce more 
problems than they fix.  This is called inherent instability.

Labs.Sogeti.com



Copyright 2020, Dennis J. Frailey Software Testing Topics 189

Can We Measure Complexity?

Measures of complexity would need to address:
– the parts of the software, 
– the interconnections between the parts,
– and the interactions between the parts.

Information Need
– Something that will help us estimate

– difficulty of programming, 
– difficulty of testing and maintaining, 
– expected level of quality

– Something that will help us evaluate and 
improve our software with regard to the above 
characteristics



Copyright 2020, Dennis J. Frailey Software Testing Topics 190

How Can We Measure Complexity?

The base measures
would quantify the 
attributes of:

– The parts or 
components of the 
software

– How many parts or 
components there are

– The arrangement of 
the parts

– The interactions of 
the parts



Copyright 2020, Dennis J. Frailey Software Testing Topics 191

Compound Measures

Combining the base measures into calculations that help 
us address our information needs, answering questions 
such as:

– What aspects of software structure can help forecast
development effort and quality?

– Is my software structure good?

– How should I test my software?

– How can I improve my software structure?

– How much has it improved?



Copyright 2020, Dennis J. Frailey Software Testing Topics 192

What Can We Measure?

We might learn something about the structure and 
complexity of software by measuring:

– Requirements
§ Models, use cases, test cases

– Architecture and Design
§ Models, design patterns, structure, control flow, data flow

– The code itself
§ Statements, variables, nesting, control flow, data flow

– The way the code is assembled to produce the final product
§ Load files, use of libraries



Copyright 2020, Dennis J. Frailey Software Testing Topics 193

One Problem Is That There are 
Many Systems for Describing 

Software Structure



Copyright 2020, Dennis J. Frailey Software Testing Topics 194

Generally Speaking We Measure 
Complexity of Systems and of 

Components that Make up Systems
We usually start with the architecture of the system

This is the 
architecture of a 
system defined 

using structured 
analysis. There are 

complexity 
measures for the 

system and for the 
individual 

components.



Copyright 2020, Dennis J. Frailey Software Testing Topics 195

With Object Oriented Systems, the Nature of 
the Components Varies with the Methodology

This means we must sometimes devise 
methodology-specific measures

This is the 
architecture of a 

system defined using 
object oriented 

methodology. There 
are complexity 

measures for the 
system and for the 

individual 
components.



Copyright 2020, Dennis J. Frailey Software Testing Topics 196

Order of Presentation

We will focus on complexity of structured, procedural 
software

– Because this is where most of the research has been focused

– Because the results apply to software in many different 
languages

– Because most of the results also apply to object oriented 
software

From time to time we will mention how the concepts are 
applied to object oriented software



Copyright 2020, Dennis J. Frailey Software Testing Topics 197

Fundamentally, the complexity of a system depends 
on the number of components and the number of 

links between the components of the system

It can be further complicated by the degree to which 
the components share common elements (coupling)

System Level Complexity

VS



Copyright 2020, Dennis J. Frailey Software Testing Topics 198

Contents

§ Complexity: what and how to measure

Ø Structured Programs and Flowgraph Analysis

§ Measures of Complexity

§ Closing Remarks



Copyright 2020, Dennis J. Frailey Software Testing Topics 199

Control Flow Captures Major 
Complexity-related Attributes

Our intuitive notions of complexity would say that when 
there are more parts and more complex ways they 

interact, we have more complex software.

vs

Many measures of complexity make use of control flow analysis.



Copyright 2020, Dennis J. Frailey Software Testing Topics 200

Control Flow is Often Modeled with 
Directed Graphs

Node

Arc 
or 

Edge

This could be flow within a 
system or within a module



Copyright 2020, Dennis J. Frailey Software Testing Topics 201

In Many Notations, the Shape of the Node 
Conveys the Nature of What it Represents
For example, flowcharts:



Copyright 2020, Dennis J. Frailey Software Testing Topics 202

Notation To Be Used Here
(in these slides)

§ Arc or Edge
§ Procedure Node 

– A block of code. 
Any decisions are 
internal to the 
block. One exit.

§ Predicate Node 
– One that makes a 

decision.

§ Start Node

§ Stop Node

D Gor

E Squarish shape, 
Exactly one arc leaving

F Round shape, Two or 
more arcs leaving

Colors of procedure and 
predicate nodes are not part of 

the notation.
Colors are used only to clarify 
points being made on a slide.

A path between nodes



Copyright 2020, Dennis J. Frailey Software Testing Topics 203

A FlowGraph

A flowgraph is a directed graph with
– One start node, and

– One end node, 

Ø that has the following property:
– Every other node lies on a path between the start node 

and the end node

Notes:
– This notation works for any procedural programming language
– But not all languages can represent all possible flowgraphs
– Certain common language constructs have readily recognized 

flowgraph forms
See later slides or Fenton, 

page 379 for some examples.



Copyright 2020, Dennis J. Frailey Software Testing Topics 204

Example: Code, Flowchart, and Flowgraph



Copyright 2020, Dennis J. Frailey Software Testing Topics 205

What is a Structured Program?
A structured program is one constructed out of 
three fundamental control structures:

– Sequence (ordered statements and/or subroutines)
§ Examples:  A = B+C;  D = FUNC(E,F)

– Selection (one or more statements is executed, 
depending on the state of the system)
§ Example: If C1 Then <true option> Else <false option>

– Iteration [loop] (a statement or block is executed 
until the program has reached a certain state)
§ Examples: While; Repeat; For; Do… Until



Copyright 2020, Dennis J. Frailey Software Testing Topics 206

Structured Program Notation

Blue: NS Diagram notation; Green: Flowchart notation

Sequence              Selection                Iteration (Loop)    



Copyright 2020, Dennis J. Frailey Software Testing Topics 207

These Three are Sufficient to Represent 
Any Program

Ø Note: This does not necessarily mean it is the only 
way or the best way.

Ø The theorem simply states that it is possible to 
represent any function with only the three control 
structures.

The structured program theorem, also 
known as the Böhm-Jacopini theorem, says 
that the class of flowgraphs representing 

the three control structures above can 
compute any computable function



Copyright 2020, Dennis J. Frailey Software Testing Topics 208

Why Are Structured Programs Important?

Studies have shown that limiting the software to a 
small number of well defined control structures has 
these benefits:

– Easier to understand
– Less error prone
– Easier to analyze and test
– Easier to measure

1 See References

This started out as a theoretical concept, developed by Edsger Dijkstra and others.  

It became more widely known when Dijkstra wrote his famous “Go To Considered 
Harmful”1 letter to the editor of Communications of the ACM (in 1968). 



Copyright 2020, Dennis J. Frailey Software Testing Topics 209

There May Be More Than One Flowgraph
Representing A Particular Kind of Control Structure

Example: Two flowgraphs for selection

End

A

X

True
False

If A then X
(D0)

Y

End

A

X

True False

If A then X else Y
(D1)

Each of these is also 
a “prime” flowgraph, 
meaning it cannot be 
reduced to a simpler 
form.  We’ll discuss 
this further in later 

slides.



Copyright 2020, Dennis J. Frailey Software Testing Topics 210

Two Prime Flowgraphs for Iteration

End

A

X

True
False

While A Do 
X

(D2)

End

X

B
True

False

Repeat X 
Until B

(D3)



Copyright 2020, Dennis J. Frailey Software Testing Topics 211

Prime Flowgraphs and D Notation

§ A prime flowgraph is one that cannot be reduced (to a 
simpler flowgraph). 
– D0, D1, D2 and D3 are all prime.
– See discussion of “reduction” in later slides.

§ The D notation is a widely recognized way of denoting 
certain standard, prime flowgraphs.

If A then B
(D0)

This is a standard type of flowgraph, known as 
a D0 structured flowgraph.



Copyright 2020, Dennis J. Frailey Software Testing Topics 212

The Flowgraphs D0-D3 (and sequencing) 
Can Be Used To Represent Any Program

As a result, some define a program to be “structured” 
only if it is represented by a combination of these 
flowgraphs.

However, there are several additional prime 
flowgraphs that represent commonly used language 
constructs and that can greatly simplify some 
programs.

So different organizations and researchers have 
defined additional prime flowgraphs that may be 
permitted in “structured” programs.

In other words, every organization defines structured in its own way.



Copyright 2020, Dennis J. Frailey Software Testing Topics 213

Structured Program Flowgraphs:
What Is Common and What Is Not

§ What all structured programs have in common
– Definitions of edges, nodes, etc.
– Built out of the three fundamental constructs: sequence, 

selection, and iteration
– It must be possible to reduce a program to a combination of a 

selected set, S, of prime flowgraphs

§ What is Different
– Which prime flowgraphs are included in the set S.

See Fenton, section 9.2 for a discussion of flowgraphs and 
structure and, in particular, section 9.2.1.2 for a generalized 

notion of structuredness.



Copyright 2020, Dennis J. Frailey Software Testing Topics 214

An Example of Why
Additional Prime Flowgraphs are Useful

B

End

A

X

True
False

YX

True False

D

If only D0 and D1 can be used to 
represent this code, then we must use 
a D1 within another D1 and must show 

X twice.
This is the equivalent of rewriting the 

source code as shown below.

IF A THEN X
ELSE 

IF B THEN X
ELSE Y

IF A or B THEN X
ELSE Y

X must be 
duplicated. If 
X is a lot of 
code this is 

inconvenient.



Copyright 2020, Dennis J. Frailey Software Testing Topics 215

D5 Was Introduced To Allow Common 
Boolean Selection Decisions

End

A

X

True
False

If A then B
(D0)

Y

End

A

X

True False

If A then B else C
(D1)

X

End

A

B
True

False

Y

False True

If A or B then X 
else Y
(D5)

Y

End

A

B

True
False

X

FalseTrue

If A and B then X 
else Y
(D5)



Copyright 2020, Dennis J. Frailey Software Testing Topics 216

D4 Was Introduced to Allow Middle-Exit Loops

End

A

X

True
False

While A 
Do X
(D2)

End

X

B True

False

Repeat X 
Until B

(D3)

End

X

A
True

False

YDo X  
Exit when A  

Do Y  
Repeat

(D4)



Copyright 2020, Dennis J. Frailey Software Testing Topics 217

C Flowgraphs are Prime Flowgraphs
for CASE Statements

x2

End

A

x1

a1

…

ana2

xn

Case A of
A1 : X1
A2 : X2

…
An : Xn
(C1…n)

Note that there are 
an arbitrary number 
of these, depending 

on n – the number of 
possible selections.

Note also that these are classified 
as “C” structured flowgraphs, not 

“D” structured flowgraphs, because, 
technically, the CASE statement is 
not one of the three fundamental 

control structures.



Copyright 2020, Dennis J. Frailey Software Testing Topics 218

L Structured Flowgraphs Represent 
Multi-Exit Loops

B

End

X

A
True

False Y
True

False

Do X  
Exit when A

Do Y  
Exit when B  

Repeat
(L2)

A two-exit loop is 
shown (L2). This is 

commonly used.  
However higher 
numbers of exits 

could be 
represented as well.

This also has its own 
classification (L) rather than 

being considered a D 
flowgraph because it is not 

one of the three fundamental 
control structures.



Copyright 2020, Dennis J. Frailey Software Testing Topics 219

Why Use Flowgraphs to Measure Complexity?

§ Directed Graphs clarify the flow of control between 
software elements

§ Many measures of software complexity can be 
determined from directed graphs

§ It is fairly easy to represent any program with a 
directed graph
– Note that there might be several ways to graph a program, but 

they should all have the same measure of complexity if they 
are done correctly



Copyright 2020, Dennis J. Frailey Software Testing Topics 220

Combining Flowgraphs

Flowgraphs with a single entry and single exit can be 
combined in the following ways:

§ Sequencing: Merging the end node of one flowgraph
with the start node of the other

§ Nesting: Replacing an arc in one flowgraph with the 
other flowgraph

Flowgraphs can also be reduced or condensed or 
decomposed by reversing the above

§ For example, collapsing a nested flowgraph into a 
single node and arc
– This is, conceptually, the equivalent of replacing the nested 

flowgraph with a procedure call



Copyright 2020, Dennis J. Frailey Software Testing Topics 221

Sequencing Example

Sequence S1 Sequence S2

Sequence S1 S2

End
A

CB

End
D

FE

G

A

CB

End
D

FE

G



Copyright 2020, Dennis J. Frailey Software Testing Topics 222

Nesting Example

D calls 
procedure P

Procedure P

End
D

CB

A End
G

FE

H
P

D

CB
End

G

FE

H

A



Copyright 2020, Dennis J. Frailey Software Testing Topics 223

Reduction Example 1

A End
D

CB

A
D

CB
End

G

FE

H

Procedure P

End
G

FE

H
P

D calls 
procedure P

Any single-
entry, single-

exit sub-
graph can be 
replaced by a 

procedure 
call



Copyright 2020, Dennis J. Frailey Software Testing Topics 224

Reduction Example 2

Any sequence 
containing no 
decisions or 

iterations can be 
reduced to a 
single node

A DCB

A C,DB

A B,C,D

A,B,C,D



Copyright 2020, Dennis J. Frailey Software Testing Topics 225

McCabe Cyclomatic Complexity
The Cyclomatic Complexity (v) of a Module or a System is:

– The number of linearly independent1 paths (basis paths) 
through the module or system

– If F is a flowgraph2, then v(F) = e – n + 2
§ Where e is the number of edges (arcs)
§ And n is the number of nodes

– If a system consists of multiple flowgraphs that are not 
connected together, the formula becomes:

v(F) = e – n + 2c
§ Where c is the number of separate flowgraphs3

1 To be discussed a little later 2 With one entry and one exit
3 In graph theory these are called connected components



Copyright 2020, Dennis J. Frailey Software Testing Topics 226

Examples of Cyclomatic Complexity

§ Example 1:

Ø v(F) =   e – n + 2   =   3 – 4 + 2   =   1

Ø There is only 1 path through the code

§ Example 2:

A DCB

C

E

A

B
True

False

D

False True

Ø v(F) =   e – n + 2   = 
6 – 5 + 2   =   3

Ø There are 3 paths through 
the code:
§ A B D E
§ A B C E
§ A C E



Copyright 2020, Dennis J. Frailey Software Testing Topics 227

Why Is Cyclomatic Complexity Useful?

§ Number of paths indicates maximum number of 
separate tests needed to test all paths
– This should relate to the difficulty of testing the program

§ It also indicates the number of decision points in 
the program (plus 1)
– This should relate to the difficulty of understanding and 

testing the program

!"#$%&'()# #%&*$+,)("-).-/%(-'-*+01+#(-&+'.20+-%1-
(3+.+-(3)/4.-5.++-6+/(%/7-#3'*(+0-89-:2(-)(-).-'-1')0$"-

0+$)':$+-42);+<



Copyright 2020, Dennis J. Frailey Software Testing Topics 228

The Higher the Cyclomatic Complexity, the 
Harder the Code Is to Maintain



Copyright 2020, Dennis J. Frailey Software Testing Topics 229

What Do We Mean by
Linearly Independent Paths?

The number of linearly independent paths is the 
minimum number of end-to-end paths required to touch 
every path segment at least once.

– Sometimes the actual number of paths needed to cover the system is 
less than this because it may be possible to combine several path 
segments in one traversal.

There may be more than one set of linearly independent 
paths for a given flowgraph

– This becomes more likely as you get more complex flowgraphs

Determining a set of linearly independent paths is 
something you might study in a course on testing or in a 
course on graph theory

– It gets harder as the cyclomatic complexity goes up



Copyright 2020, Dennis J. Frailey Software Testing Topics 230

A Graph with Five 
Connected Components

The graph above is not a flowgraph by our strict definition, 
because it has more than one start and stop node and not all nodes 
are connected to any given start or stop node. But it illustrates the 
concept of connected components.

This graph has five 
separate regions, 

which are connected 
within themselves, 

but not to each other. 
Each region is called 

a connected 
component.



Copyright 2020, Dennis J. Frailey Software Testing Topics 231

Why Would We Care About Graphs 
with Many Connected Components?

§ We could measure the cyclomatic complexity of a 
system consisting of several separate modules

§ In object oriented systems we could measure the 
cyclomatic complexity of a class containing multiple 
methods



Copyright 2020, Dennis J. Frailey Software Testing Topics 232

McCabe Essential Complexity

The Essential Complexity (ev) of a Module or a System is:
– The cyclomatic complexity of the fully reduced flowgraph
– Example:

§ ev(F) = 1 because this can be reduced to one node

Ø If the flowgraph is constructed completely of prime 
flowgraphs (i.e., it is structured) then the essential 
complexity will be 1. 

A DCB



Copyright 2020, Dennis J. Frailey Software Testing Topics 233

Some Issues with Essential Complexity
(slide 1 of 2)

Essential complexity is intended to tell us how well 
structured a program is.

However
§ As originally defined, the only valid primes were the 

four D structured primes: D0, D1, D2, D3

– So if you allow additional primes, do you revise the definition 
of essential complexity to include the new primes?

– Do you allow D4 and D5 but nothing else?

– What about the C structured primes and the L structured 
primes?



Copyright 2020, Dennis J. Frailey Software Testing Topics 234

Some Issues with Essential Complexity
(slide 2 of 2)

If your program is not “structured” it isn’t clear whether 
the essential complexity tells us much beyond that

– Does a larger essential complexity actually mean anything?

– If two programs have the same essential complexity, are they 
equally complex?
§ See fig. 9.13 in Fenton for an example
§ He shows two flowgraphs that have the same essential complexity, 

but intuitively one of them is a lot more complex and harder to 
understand than the other.



Copyright 2020, Dennis J. Frailey Software Testing Topics 235

Contents

§ Complexity: what and how to measure

§ Structured Programs and Flowgraph Analysis

§ Measures of Complexity

Ø Closing Remarks



Copyright 2020, Dennis J. Frailey Software Testing Topics 236

There is No Single Measure of Complexity

§ As we have seen, there are different ways to measure 
complexity 

§ Research shows that sometimes the attributes of 
complexity may conflict
– For example

§ low coupling doesn’t always mean high cohesion
§ low cyclomatic complexity doesn’t always mean easy to 

understand
§ structured software may be awkward to produce in languages 

without certain constructs

Use complexity measures as guidelines, not as 
“magic numbers” that result in rigid requirements 

for code.



Copyright 2020, Dennis J. Frailey Software Testing Topics 237

END OF
Part 5



Copyright 2020, Dennis J. Frailey Software Testing Topics 238

Any Questions?



Copyright 2020, Dennis J. Frailey Software Testing Topics 239

End of
Lecture



Copyright 2020, Dennis J. Frailey Software Testing Topics 240

References
Part 1

Bourque, P. and R.E. Fairley, eds., Guide to the Software Engineering 
Body of Knowledge, Version 3.0, IEEE Computer Society Press, 2014. ISBN 
978-0769551661. Available in PDF format (free) at  www.swebok.org. 

Crosby, Philip, Quality is Free. New York: McGraw-Hill, 1979. ISBN 0-07-
014512-1.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and 
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228.
Juran, Joseph M., Juran on Quality by Design: The New Steps for Planning 
Quality into Goods and Services. Free Press, 1992. ISBN-13: 978-
0029166833.

Project Management Institute, SWX – The Software Extension to the 
PMBOK Guide Fifth Edition, Project Management Institute, 2013. ISBN 978-
1628250138.  

Weinberg, Gerald M.,  Quality Software Management, Volume 1, Systems 
Thinking, Dorset House, New York, 1992.  ISBN: 0-932633-22-6.



Copyright 2020, Dennis J. Frailey Software Testing Topics 241

References
Part 2

Devore, Jay, N. Farnum, and J. Doi, Applied Statistics for 
Engineers and Scientists, 3nd Edition, Thompson, 2013.  ISBN 
978-1133111368. 

Fenton, Norman and James Bieman, Software Metrics: A 
Rigorous and Practical Approach, Third Edition, Chapman and 
Hall, 2014. ISBN 978-1439838228.

Stevens, S. S., "On the Theory of Scales of Measurement". 
Science (7 June 1946). 103 (2684): 677–680.



Copyright 2020, Dennis J. Frailey Software Testing Topics 242

References – Part 3

§ Lyu, Michael R., Handbook of Software 
Reliability Engineering, IEEE, 1996, Catalog # 
RS00030. ISBN 0-07-039400-8. 

§ Musa, John, Software Reliability Engineering: 
More Reliable Software, Faster Development and 
Testing, McGraw Hill. ISBN: 0-07-913271-5.

§ Xie, M.  Software Reliability Modeling, World 
Scientific, London, 1991.  ISBN 981-02-0640-2.



Copyright 2020, Dennis J. Frailey Software Testing Topics 243

References
Part 4 (1 of 2)

Chatfield, C., Statistics for Technology, A Course in Applied Statistics, 
Third Edition, Chapman and Hall, London (1983), ISBN 978-0412253409.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and 
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 6.

Hedstrom, John and Dan Watson,  “Developing Software Defect 
Prediction,” Proceedings, Sixth International Conference on Applications of 
Software Measurement, 1995.

Jones, Capers, Applied Software Measurement, McGraw Hill, 1991. ISBN: 
0-07-032813-7.

Knuth, Donald, Seminumerical Algorithms: The Art of Computer 
Programming, Vol II, Addison-Wesley, 1969. ASIN: B00157WFAU



Copyright 2020, Dennis J. Frailey Software Testing Topics 244

References
Part 4 (2 of 2)

Ott, R.L. and M. T. Longnecker, An Introduction to Statistical Methods 
and Data Analysis, 6th Edition, Duxbury Press (2008), ISBN 978-
0495017585.

Snyder, Terry and Ken Shumate,  Defect Prevention in Practice (Draft 
white paper), Hughes Aircraft Company, October 22, 1993.

Ross, Sheldon M..  Introduction to Probability Models, Academic Press, 
1993. Musa, John, Software Reliability Engineering: More Reliable Software, 
Faster Development and Testing, McGraw Hill. ISBN: 0-07-913271-5. 



Copyright 2020, Dennis J. Frailey Software Testing Topics 245

References
Part 4 (1 of 2)

Abran, A., et. al., “Functional Complexity Measurement”, Proceedings, 
IWSM 2001 - International Workshop on Software Measurement.

Chidamber, S. and Chris Kemerer, A Metrics suite for Object Oriented 
Design, MIT Sloan School of Management E53-315 (1993).

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and 
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228, Chapter 9

Fenton, N. and A. Melton, “Deriving Structurally Based Software 
Measures,” Journal of System Software, vol 12 (1990), pp 177-187.

Henry, S. and D. Kafura, “Software Structure Metrics Based on 
Information Flow”, IEEE Transactions on Software Engineering, Volume SE-
7, No. 5 (Sept, 1981), pp 510-518.



Copyright 2020, Dennis J. Frailey Software Testing Topics 246

References
Part 4 (2 of 2)

IEEE 9982.2 (1988). IEEE Guide for the Use of IEEE Standard Dictionary 
of Measures to Produce Reliable Software, A25.  Data of Information Flow 
Complexity. P112.

Stevens, W., G. Myers and L. Constantine, “Structured Design”, IBM 
Systems Journal, vol 13, no 2 (1974), pp 115-139.

Kitchenham, B. A., “Measuring to Manage”, in Mitchell, Richard J. (editor), 
Managing Complexity in Software Engineering, London, Peter Peregrinus, 
Ltd. (1990). ISBN 0 86341 171 1

Lavazza, L. and G. Robiolo, “Functional Complexity Measurement: 
Proposals and Evaluations”, Proceedings of ICSEA 2011: the Sixth 
International Conference on Software Engineering Advances.


